A308661 Number of ways to write 12*n+5 as (2^a*5^b)^2 + c^2 + d^2, where a,b,c,d are nonnegative integers with a > 0 and c <= d.
1, 2, 3, 3, 2, 3, 3, 5, 5, 4, 5, 3, 5, 5, 5, 6, 3, 6, 4, 3, 5, 4, 7, 6, 6, 6, 2, 8, 8, 5, 5, 5, 6, 5, 6, 10, 6, 6, 8, 4, 6, 8, 8, 7, 3, 10, 5, 7, 9, 6, 7, 3, 9, 7, 2, 7, 6, 9, 8, 6, 8, 6, 8, 9, 5, 4, 7, 6, 4, 5, 7, 8, 5, 8, 7, 6, 4, 8, 10, 6, 10, 3, 6, 9, 6, 11, 5, 9, 4, 4, 8, 8, 10, 9, 7, 4, 5, 11, 7, 9, 10
Offset: 0
Keywords
Examples
a(0) = 1 with 12*0 + 5 = (2^1*5^0)^2 + 0^2 + 1^2. a(4) = 2 with 12*4 + 5 = 53 = (2^1*5^0)^2 + 0^2 + 7^2 = (2^2*5^0)^2 + 1^2 + 6^2. a(441019) = 2 with 12*441019 + 5 = 5292233 = (2^1*5^2)^2 + 513^2 + 2242^2 = (2^3*5^1)^2 + 757^2 + 2172^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[12n+5-4^a*25^b-x^2],r=r+1],{a,1,Log[4,12n+5]},{b,0,Log[25,(12n+5)/4^a]},{x,0,Sqrt[(12n+5-4^a*25^b)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments