cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308662 Number of ways to write n as (2^a*5^b)^2 + c*(3c+1) + d*(3d+2), where a and b are nonnegative integers, and c and d are integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 2, 2, 4, 2, 2, 5, 3, 3, 3, 3, 3, 4, 6, 4, 3, 3, 5, 4, 4, 3, 6, 5, 6, 3, 2, 6, 3, 6, 2, 3, 4, 4, 6, 5, 5, 4, 4, 6, 1, 4, 4, 4, 6, 3, 5, 2, 6, 7, 3, 2, 5, 5, 4, 5, 6, 8, 5, 6, 5, 4, 8, 3, 7, 3, 3, 7, 3, 6, 7, 4, 4, 7, 7, 4, 4, 8, 7, 4, 3, 6, 4, 7, 7, 4, 1, 6, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 15 2019

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0.
Conjecture 2: Let r be 1 or 2. Then, any positive integer n can be written as (2^a*5^b)^2 + c*(2c+1) + d*(3d+r), where a and b are nonnegative integers, and c and d are integers.
We have verified Conjectures 1 and 2 for all n = 1..10^8.

Examples

			a(3) = 1 with 3 = (2^0*5^0)^2 + (-1)*(3*(-1)+1) + 0*(3*0+2).
a(7) = 1 with 7 = (2^1*5^0)^2 + (-1)*(3*(-1)+1) + (-1)*(3*(-1)+2).
a(10) = 1 with 10 = (2^0*5^0)^2 + 1*(3*1+1) + 1*(3*1+2).
a(52) = 1 with 52 = (2^0*5^0)^2 + 3*(3*3+1) + (-3)*(3*(-3)+2).
a(98) = 1 with 98 = (2^0*5^1)^2 + 4*(3*4+1) + (-3)*(3*(-3)+2).
a(14596) = 1 with 14596 = (2^3*5^0)^2 + (-36)*(3*(-36)+1) + (-60)*(3*(-60)+2).
a(22163) = 1 with 22163 = (2^3*5^0)^2 + 66*(3*66+1) + (-55)*(3*(-55)+2).
a(150689) = 1 with 150689 = (2^6*5^1)^2 + 117*(3*117+1) + (-49)*(3*(-49)+2).
		

Crossrefs

Programs

  • Mathematica
    OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]];
    tab={};Do[r=0;Do[If[OctQ[n-4^a*25^b-x(3x+1)],r=r+1],{a,0,Log[4,n]},{b,0,Log[25,n/4^a]},{x,-Floor[(Sqrt[12(n-4^a*25^b)+1]+1)/6],(Sqrt[12(n-4^a*25^b)+1]-1)/6}];tab=Append[tab,r],{n,1,100}];Print[tab]