A308662 Number of ways to write n as (2^a*5^b)^2 + c*(3c+1) + d*(3d+2), where a and b are nonnegative integers, and c and d are integers.
1, 1, 1, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 2, 2, 4, 2, 2, 5, 3, 3, 3, 3, 3, 4, 6, 4, 3, 3, 5, 4, 4, 3, 6, 5, 6, 3, 2, 6, 3, 6, 2, 3, 4, 4, 6, 5, 5, 4, 4, 6, 1, 4, 4, 4, 6, 3, 5, 2, 6, 7, 3, 2, 5, 5, 4, 5, 6, 8, 5, 6, 5, 4, 8, 3, 7, 3, 3, 7, 3, 6, 7, 4, 4, 7, 7, 4, 4, 8, 7, 4, 3, 6, 4, 7, 7, 4, 1, 6, 7
Offset: 1
Keywords
Examples
a(3) = 1 with 3 = (2^0*5^0)^2 + (-1)*(3*(-1)+1) + 0*(3*0+2). a(7) = 1 with 7 = (2^1*5^0)^2 + (-1)*(3*(-1)+1) + (-1)*(3*(-1)+2). a(10) = 1 with 10 = (2^0*5^0)^2 + 1*(3*1+1) + 1*(3*1+2). a(52) = 1 with 52 = (2^0*5^0)^2 + 3*(3*3+1) + (-3)*(3*(-3)+2). a(98) = 1 with 98 = (2^0*5^1)^2 + 4*(3*4+1) + (-3)*(3*(-3)+2). a(14596) = 1 with 14596 = (2^3*5^0)^2 + (-36)*(3*(-36)+1) + (-60)*(3*(-60)+2). a(22163) = 1 with 22163 = (2^3*5^0)^2 + 66*(3*66+1) + (-55)*(3*(-55)+2). a(150689) = 1 with 150689 = (2^6*5^1)^2 + 117*(3*117+1) + (-49)*(3*(-49)+2).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), No. 7, 1367-1396.
Crossrefs
Programs
-
Mathematica
OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]]; tab={};Do[r=0;Do[If[OctQ[n-4^a*25^b-x(3x+1)],r=r+1],{a,0,Log[4,n]},{b,0,Log[25,n/4^a]},{x,-Floor[(Sqrt[12(n-4^a*25^b)+1]+1)/6],(Sqrt[12(n-4^a*25^b)+1]-1)/6}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments