This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308663 #50 Sep 15 2019 21:06:29 %S A308663 1,1,2,2,3,4,4,5,7,8,8,9,12,15,16,16,17,21,27,31,32,32,33,38,48,58,63, %T A308663 64,64,65,71,86,106,121,127,128,128,129,136,157,192,227,248,255,256, %U A308663 256,257,265,293,349,419,475,503,511,512 %N A308663 Partial sums of A097805. %C A308663 Curtz (1965), page 15, from right to left, gives (F1): %C A308663 1/2; %C A308663 1/4, 3/4; %C A308663 1/8, 4/8, 7/8; %C A308663 1/16, 5/16, 11/16, 15/16; %C A308663 ... . %C A308663 Numerators + Denominators = (C) = %C A308663 3; %C A308663 5, 7; %C A308663 9, 12, 15; %C A308663 17, 21, 27, 31; %C A308663 ... . %C A308663 This is the current sequence without powers of 2. %C A308663 The triangle (P) for a(n) is %C A308663 1; %C A308663 1, 2; %C A308663 2, 3, 4; %C A308663 4, 5, 7, 8; %C A308663 8, 9, 12, 15, 16; %C A308663 ... . %C A308663 (C) is the core of (P). %C A308663 Extension of (F1). (F2) = %C A308663 0/1; %C A308663 0/1, 1/1; %C A308663 0/2, 1/2, 2/2; %C A308663 0/4, 1/4, 3/4, 4/4; %C A308663 0/8, 1/8, 4/8, 7/8, 8/8; %C A308663 ... . %C A308663 (Mentioned, without 0's, op. cit., page 16.) %C A308663 a(n) = Numerators + Denominators. %C A308663 Row sums of triangle (P): A084858(n). %C A308663 From right to left, with alternating signs: 1, 1, 3, 2, 12, 8, 48, 32, ..., see A098646. %C A308663 For triangle (C), row sums give A167667(n+1). %C A308663 From right to left, with alternating signs: A098646(n). %C A308663 Rank of A016116(n): 0 together with A117142. %H A308663 Paul Curtz, <a href="http://paul.curtz.free.fr/wp-content/uploads/These_Curtz_1965.pdf">Accélération de la convergence de certaines séries alternées à l'aide des fonctions de sommation</a>, Thèse de 3ème Cycle d'Analyse Numérique, Faculté des Sciences de l'Université de Paris, 4 mai 1965. %F A308663 T(n,k) = ceiling(2^(n-1)) + Sum_{j=0..k-1} binomial(n-1,j). - _Alois P. Heinz_, Jun 15 2019 %F A308663 a(n+1) = a(n) + A097805(n+1) for n >= 0. %Y A308663 Cf. A097805. %K A308663 nonn,tabl %O A308663 0,3 %A A308663 _Paul Curtz_, Jun 15 2019 %E A308663 Edited by _N. J. A. Sloane_, Sep 15 2019