cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308665 Cardinality of the shortcut set of the multiplicative group of integers modulo the n-th primorial.

This page as a plain text file.
%I A308665 #73 Jul 29 2019 12:20:15
%S A308665 1,2,4,48,384,2304,4608,18432,552960,19906560,796262400,33443020800,
%T A308665 66886041600,267544166400,535088332800,32105299968000,
%U A308665 2118949797888000,148326485852160000,10679506981355520000,833001544545730560000,1666003089091461120000,146608271840048578560000
%N A308665 Cardinality of the shortcut set of the multiplicative group of integers modulo the n-th primorial.
%C A308665 {R(1),...,R(phi(prime(n)#))} = {(prime(n)#/2 +- {R(1),...,R(k)}*2^{1,2,...,z}) mod prime(n)#}.
%C A308665 The formula is used for the compressed representation of the set of the multiplicative group of integers modulo prime(n)#. This is a new formula in number theory. {R(1),...,R(k)} is the shortcut set of the multiplicative group of integers modulo prime(n)# (or compressed representation of the set of the multiplicative group of integers modulo prime(n)#).
%H A308665 Alexey V. Bazhin, <a href="/A308665/b308665.txt">Table of n, a(n) for n = 3..24</a>
%F A308665 a(n) = A005867(n+2)/(2*A155747(n+1)).
%F A308665 If {R(1),...,R(phi(prime(n)#))} = {(prime(n)#/2 +- {R(1),...,R(k)}*2^{1,2,...,z}) mod prime(n)#} then a(n) = k.
%e A308665 First example:
%e A308665 Let R = {1, 7, 11, 13, 17, 19, 23, 29} be the set of the multiplicative group of integers modulo 30 (or it is the set of positive integers less than 2*3*5 and prime to 2*3*5, or it is the reduced residue system for the 3rd primorial number 30 = A002110(3)).
%e A308665 The cardinality of |R| is equal to 8 elements, 8 = A005867(3).
%e A308665 The set {1} is the shortcut set of the multiplicative group of integers modulo 30.
%e A308665 The cardinality of |{1}| = 1, i.e., a(1) = 1.
%e A308665 R = { (30/2 +- {1}*2^{1, ..., 4}) mod 30 } = {(30/2 +- {1}*2^{1,2,3,4}) mod 30}={(15+2^1) mod 30, (15-2^1) mod 30,(15+2^2) mod 30, (15-2^2) mod 30, (15+2^3) mod 30, (15-2^3) mod 30, (15+2^4) mod 30, (15-2^4) mod 30} = {1,7,11,13,17,19,23,29},
%e A308665 where 30 = A002110(3), 4 = A155747(2), |R| = A005867(3).
%e A308665 4 is the smallest number m with the property that 2^m-1 is divisible by the first n odd primes.
%e A308665 Second example:
%e A308665 Let R = {1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209} be the set of the multiplicative group of integers modulo 210 (or it is the set of positive integers less than 2*3*5*7 and prime to 2*3*5*7, or it is the reduced residue system for the 4th primorial number 210 = A002110(4)).
%e A308665 The cardinality of |R| is equal to 48 elements, 48 = A005867(5).
%e A308665 The set {1, 11} is the shortcut set of the multiplicative group of integers modulo 210.
%e A308665 The cardinality of |{1, 11}| = 2, i.e., a(2) = 2.
%e A308665 R = { ( 210/2 +- {1, 11}*2 ^{1..12}) mod 210 }, where 210 = A002110(4), 12 = A155747(3), |R| = A005867(4).
%e A308665 12 is the smallest number m with the property that 2^m-1 is divisible by the first n odd primes.
%e A308665 General case:
%e A308665 R = {R(1), ..., R(phi(prime(n)#))},
%e A308665 R = {(prime(n)#/2 +- {R(1),R(2),...,R(k)}*2^{1,2,...,z}) mod prime(n)#}, where prime(n)# is the product of the first n primes, i.e., it is A002110(n); phi is Euler's totient function, which counts the positive integers up to a given argument that are relatively prime to the argument, in our case phi(prime(n)#) is A005867;
%e A308665 R is the set of the multiplicative group of integers modulo prime(n)#;
%e A308665 z is a term of A155747.
%e A308665 k is a term of a(n).
%e A308665 R(1) <= R(k) < R(phi(prime(n)#)).
%e A308665 Table:
%e A308665 +-----+-----------+----------------+---------+------+
%e A308665 |  n  | A002110   | A005867        | A155747 | a(n) |
%e A308665 |     | prime(n)# | phi(prime(n)#) | z       | k    |
%e A308665 +-----+-----------+----------------+---------+------+
%e A308665 |  0  |        1  |          1     |   -     |    - |
%e A308665 |  1  |        2  |          1     |   -     |    - |
%e A308665 |  2  |        6  |          2     |   2     |    - |
%e A308665 |  3  |       30  |          8     |   4     |    1 |
%e A308665 |  4  |      210  |         48     |  12     |    2 |
%e A308665 |  5  |     2310  |        480     |  60     |    4 |
%e A308665 |  6  |    30030  |       5760     |  60     |   48 |
%e A308665 |  7  |   510510  |      92160     | 120     |  384 |
%e A308665 |  8  |  9699690  |    1658880     | 360     | 2304 |
%e A308665 | ..  |      ...  |        ...     | ...     |  ... |
%o A308665 (PARI) f(n) = prod(k=1, n, prime(k)-1); \\ A005867
%o A308665 g(n) = lcm(vector(n, k, znorder(Mod(2, prime(k+1))))); \\ A155747
%o A308665 a(n) = f(n+2)/(g(n+1)*2); \\ _Michel Marcus_, Jun 25 2019
%Y A308665 Cf. A000040, A002110, A005867, A155747.
%K A308665 nonn,easy
%O A308665 3,2
%A A308665 _Alexey V. Bazhin_, Jun 15 2019