cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308693 a(n) = Sum_{d|n} d^(3*(n/d - 1)).

This page as a plain text file.
%I A308693 #21 May 09 2021 02:51:00
%S A308693 1,2,2,10,2,93,2,578,731,4223,2,56765,2,262489,547068,2359810,2,
%T A308693 31173510,2,152949071,387538140,1073743157,2,20134371189,244140627,
%U A308693 68719478935,282430067924,618515646977,2,12056339359929,2,39582552821762,205891133866212
%N A308693 a(n) = Sum_{d|n} d^(3*(n/d - 1)).
%F A308693 L.g.f.: -log(Product_{k>=1} (1 - k^3*x^k)^(1/k^4)) = Sum_{k>=1} a(k)*x^k/k.
%F A308693 a(p) = 2 for prime p.
%F A308693 G.f.: Sum_{k>=1} x^k/(1 - k^3*x^k). - _Ilya Gutkovskiy_, Jul 25 2019
%t A308693 a[n_] := DivisorSum[n, #^(3*(n/# - 1)) &]; Array[a, 33] (* _Amiram Eldar_, May 09 2021 *)
%o A308693 (PARI) {a(n) = sumdiv(n, d, d^(3*(n/d-1)))}
%o A308693 (PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k^3*x^k)^(1/k^4)))))
%Y A308693 Column k=3 of A308694.
%K A308693 nonn
%O A308693 1,2
%A A308693 _Seiichi Manyama_, Jun 17 2019