This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308697 #20 May 09 2021 02:50:44 %S A308697 1,65,19684,16777281,30517578126,101559956688164,558545864083284008, %T A308697 4722366482869661990977,58149737003040059690409853, %U A308697 1000000000000000000030517578190,23225154419887808141001767796309132,708801874985091845381344408569542626596 %N A308697 a(n) = Sum_{d|n} d^(3*d). %H A308697 Seiichi Manyama, <a href="/A308697/b308697.txt">Table of n, a(n) for n = 1..152</a> %F A308697 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(3*k-1))) = Sum_{k>=1} a(k)*x^k/k. %F A308697 G.f.: Sum_{k>=1} k^(3*k) * x^k/(1 - x^k). %t A308697 a[n_] := DivisorSum[n, #^(3*#) &]; Array[a, 12] (* _Amiram Eldar_, May 09 2021 *) %o A308697 (PARI) {a(n) = sumdiv(n, d, d^(3*d))} %o A308697 (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k-1))))) %o A308697 (PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(3*k)*x^k/(1-x^k))) %Y A308697 Column k=3 of A308698. %Y A308697 Cf. A073706, A308757. %K A308697 nonn %O A308697 1,2 %A A308697 _Seiichi Manyama_, Jun 17 2019