This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308700 #52 Sep 08 2022 08:46:21 %S A308700 0,0,2,18,112,600,2976,14112,65024,293760,1308160,5761536,25153536, %T A308700 109025280,469704704,2013143040,8589672448,36506664960,154617643008, %U A308700 652832538624,2748773826560,11544861081600,48378488553472,202310091276288,844424829468672,3518436999168000 %N A308700 a(n) = n * 2^(n - 2) * (2^(n - 1) - 1). %C A308700 Given a pseudo-graph P of the set X = {1, 2, ..., n}, defined as a graph represented by the discrete topology on the set X (the power set of X), for n > 0, a(n) is the number of edges of the topological graph arising by deleting loops in P (see Theorem 3.3 in Kozae et al.). %H A308700 A. M. Kozae, A. A. El Atik, A. Elrokh and M. Atef, <a href="https://doi.org/10.3233/JIFS-171561">New types of graphs induced by topological spaces</a>, Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6 (2019), pp. 5125-5134; on <a href="https://www.researchgate.net/publication/331824936_New_types_of_graphs_induced_by_topological_spaces">Research Gate</a>. %H A308700 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12,-52,96,-64). %F A308700 O.g.f.: -2 * x^2 * (-1 + 3*x)/((-1 + 2*x)^2 * (-1 + 4*x)^2). %F A308700 E.g.f.: (1/2) * exp(2*x) * (-1 + exp(2*x)) * x. %F A308700 a(n) = 12 * a(n - 1) - 52*a(n - 2) + 96*a(n - 3) - 64*a(n - 4) for n > 3. %F A308700 a(n) = n * 2^(n - 2) * (2^(n - 1) - 1). %F A308700 Lim_{n -> infinity} a(n)/a(n - 1) = 4. %F A308700 a(n) = A082134(n) - A001787(n). %F A308700 a(n) = A005843(A001787(n)) * A000225(n - 1). %F A308700 a(n) = n * A006516(n - 1). %F A308700 a(n) = n * A171476(n - 2). %F A308700 a(n) = n * A171496(n - 3). %e A308700 For n = 3, the set X = {1,2,3}, %e A308700 the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into... %e A308700 simple loops: %e A308700 {1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3. %e A308700 double loops: %e A308700 {1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops. %e A308700 triple loop: %e A308700 X --- X for a total of 3 simple loops. %e A308700 simple edges: %e A308700 {1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12. %e A308700 double edges: %e A308700 {1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges. %e A308700 By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P. %p A308700 a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25); %t A308700 Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}] %o A308700 (GAP) Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1))) %o A308700 (Magma) [n*2^(n-2)*(2^(n-1)-1): n in [0..25]]; %o A308700 (Maxima) makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25); %o A308700 (PARI) a(n)=n*2^(n-2)*(2^(n-1)-1); %Y A308700 Cf. A000225, A001787, A005843, A006516, A036239, A082134, A171476, A171496. %Y A308700 Cf. A082134 (total number of edges of the pseudo-graph P). %K A308700 nonn,easy %O A308700 0,3 %A A308700 _Stefano Spezia_, Jun 17 2019