This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308709 #42 Nov 03 2020 11:37:50 %S A308709 3,1,2,6,12,4,8,24,48,16,32,96,192,64,128,384,768,256,512,1536,3072, %T A308709 1024,2048,6144,12288,4096,8192,24576,49152,16384,32768,98304,196608, %U A308709 65536,131072,393216,786432,262144,524288,1572864,3145728,1048576 %N A308709 Start with 3, divide by 3, multiply by 2, multiply by 3, multiply by 2, repeat. %C A308709 The division by 3 is always possible since it is always preceded by a multiplication by 3. %C A308709 This sequence arises in the "3x+1" (Collatz) problem. In the rows of A322469, the terms of this sequence appear at the end of any first row which is longer than all previous rows. %H A308709 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,4). %F A308709 G.f.: x*(3+x+2*x^2+6*x^3)/(1-4*x^4). %e A308709 3; /3 => 1; *2 => 2; *3 => 6; *2 => 12; %e A308709 /3 => 4; *2 => 8; *3 => 24; *2 => 48 ... %t A308709 LinearRecurrence[{0, 0, 0, 4},{3, 1, 2, 6}, 50] %o A308709 (Python 3) %o A308709 def A308709List(init): %o A308709 a = init %o A308709 while True: %o A308709 yield a %o A308709 a //= 3 %o A308709 yield a %o A308709 a <<= 1 %o A308709 yield a %o A308709 a *= 3 %o A308709 yield a %o A308709 a <<= 1 %o A308709 a = A308709List(3) %o A308709 print([next(a) for _ in range(42)]) # _Peter Luschny_, Aug 05 2019 %Y A308709 Cf. A307407, A322469. %K A308709 nonn,easy %O A308709 1,1 %A A308709 _Georg Fischer_, Aug 05 2019