This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308711 #22 Jun 25 2025 08:06:41 %S A308711 2,3,5,7,13,17,23,37,43,47,53,67,73,83,97,103,107,113,137,167,173,197, %T A308711 223,283,307,313,317,337,347,353,367,373,383,397,443,467,503,523,547, %U A308711 607,613,617,643,647,653,673,683,743,773,797,823,853,883,907,937,947,953,967,983,997 %N A308711 Left-truncatable primes in base-10 bijective numeration. %C A308711 Not identical to A033664; in fact a strict subsequence of A033664. For example, 2003 belongs to A033664 but not to this sequence, since in bijective numerals 2003 is 19X3, whose suffix 9X3 = 1003 = 17 * 59. %H A308711 Robin Houston, <a href="/A308711/b308711.txt">Table of n, a(n) for n = 1..8391</a> %H A308711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bijective_numeration">Bijective numeration</a> %o A308711 (Sage) %o A308711 DIGITS = "123456789X" %o A308711 DECODE = {d: i + 1 for i, d in enumerate(DIGITS)} %o A308711 def decode(s): %o A308711 return reduce(lambda n, c: 10 * n + DECODE[c], s, 0) %o A308711 def search(s): %o A308711 n = decode(s) %o A308711 if n > 0: %o A308711 if not is_prime(n): return %o A308711 yield n %o A308711 for digit in DIGITS: yield from search(digit + s) %o A308711 full = sorted(search("")) %o A308711 full[:10] %Y A308711 Cf. A024785, A033664. %K A308711 nonn,base,easy,fini,full %O A308711 1,1 %A A308711 _Robin Houston_, Jun 19 2019