A308712 a(0) = 0 and a(1) = 1; for n > 1, a(n) = a(n-1)/2 if that number is an integer and not already in the sequence, otherwise a(n) = 3*a(n-1) + remainder of a(n-1)/2. (A variant of the Collatz sequence).
0, 1, 4, 2, 6, 3, 10, 5, 16, 8, 24, 12, 36, 18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 60, 30, 15, 46, 23, 70, 35, 106, 53, 160, 80, 240, 120, 360, 180, 90, 45, 136, 68, 204, 102, 51, 154, 77, 232, 116, 58, 29, 88, 44, 132, 66, 33, 100, 50, 25, 76, 38, 19, 58
Offset: 0
Examples
a(1)=1 => a(2)=3*1+1=4 because a(1) is odd => a(3)=4/2=2 because a(2) is even => a(4)=3*2+0=6 because a(3) is even but a(3)/2 is already in the sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = With[{b = a[n-1]}, If[EvenQ[b] && FreeQ[Array[a, n, 0], b/2], b/2, 3 b + Mod[b, 2]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 20 2019 *)
Comments