cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308719 Lexicographically earliest sequence of distinct terms such that the digits of two contiguous terms sum up to a palindrome.

This page as a plain text file.
%I A308719 #16 Aug 06 2023 08:38:52
%S A308719 1,2,3,4,5,6,10,7,11,9,20,12,8,21,13,14,15,23,22,16,31,25,40,30,17,59,
%T A308719 26,68,35,77,44,86,53,95,62,100,19,39,28,48,37,57,46,66,55,75,64,84,
%U A308719 73,93,82,129,91,138,109,147,118,156,127,165,136,174,145,183,154,192,163,219,172,228,181,237,190
%N A308719 Lexicographically earliest sequence of distinct terms such that the digits of two contiguous terms sum up to a palindrome.
%C A308719 This sequence is not a permutation of the integers > 0 as integers with digitsum 11, or 22, or 33, for instance, will not show.
%H A308719 Jean-Marc Falcoz, <a href="/A308719/b308719.txt">Table of n, a(n) for n = 1..10001</a>
%e A308719 The sequence starts with 1,2,3,4,5,6,10,7,11,9,... and we see indeed that the digits of:
%e A308719 {a(1); a(2)} have sum 1 + 2 = 3 (palindrome);
%e A308719 {a(2); a(3)} have sum 2 + 3 = 5 (palindrome);
%e A308719 {a(3); a(4)} have sum 3 + 4 = 7 (palindrome);
%e A308719 {a(4); a(5)} have sum 4 + 5 = 9 (palindrome);
%e A308719 {a(5); a(6)} have sum 5 + 6 = 11 (palindrome);
%e A308719 {a(6); a(7)} have sum 6 + 1 + 0 = 7 (palindrome);
%e A308719 {a(7); a(8)} have sum 1 + 0 + 7 = 8 (palindrome);
%e A308719 {a(8); a(9)} have sum 7 + 1 + 1 = 9 (palindrome);
%e A308719 {a(9); a(10)} have sum 1 + 1 + 9 = 11 (palindrome);
%e A308719 etc.
%t A308719 a[1]=1; a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]|| !PalindromeQ@Total[Join[IntegerDigits@a[n-1],IntegerDigits@k]], k++];k)
%t A308719 Array[a,68] (* _Giorgos Kalogeropoulos_, Jul 14 2023 *)
%Y A308719 Cf. A308727 with squares instead of palindromes and A308728 with primes.
%Y A308719 Cf. A228407.
%K A308719 base,nonn
%O A308719 1,2
%A A308719 _Eric Angelini_ and _Jean-Marc Falcoz_, Jun 19 2019