cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308731 a(n) is the sum of the terms of the symmetric square array defined by M(i,j) = prime(i)+i-j for i >= j and M(i,j) = M(j,i) if i < j.

This page as a plain text file.
%I A308731 #47 May 09 2025 00:59:34
%S A308731 2,13,44,105,224,397,660,1001,1464,2105,2866,3849,5030,6373,7946,9829,
%T A308731 12048,14489,17310,20459,23872,27731,31972,36707,42060,47861,54022,
%U A308731 60663,67688,75225,83902,93147,103108,113543,125014,136995,149788,163419,177760,192987,209126,225871,243912,262595,282108
%N A308731 a(n) is the sum of the terms of the symmetric square array defined by M(i,j) = prime(i)+i-j for i >= j and M(i,j) = M(j,i) if i < j.
%F A308731 a(n) = a(n-1) + (2n-1)*prime(n) + n*(n-1). - _Charlie Neder_, Jun 21 2019
%F A308731 a(n) = A316322(n) + A007290(n+1). - _M. F. Hasler_, May 08 2025
%e A308731 For n=1, the array is 2, and the sum is 2.
%e A308731 .
%e A308731 .                     2  4
%e A308731 For n=2, the array is      and the sum is 13.
%e A308731 .                     4  3
%e A308731 .
%e A308731 .                     2  4  7
%e A308731 For n=3, the array is 4  3  6 and the sum is 44.
%e A308731                       7  6  5
%o A308731 (Excel, VBA)
%o A308731 Sub A308731()
%o A308731 n = 50
%o A308731 Cells(1, 1) = 2
%o A308731 p = 0
%o A308731 For i = 2 To n^2
%o A308731     isPrime = True
%o A308731     For j = 1 To p - 1
%o A308731         If i Mod Cells(j, j) = 0 Then
%o A308731             isPrime = False
%o A308731             Exit For
%o A308731         End If
%o A308731     Next j
%o A308731     If isPrime then
%o A308731         p = p + 1
%o A308731         Cells(p, p) = i
%o A308731         If p >= n Then
%o A308731             Exit For
%o A308731         End If
%o A308731     End If
%o A308731 Next i
%o A308731 For i = 2 To p
%o A308731     For j = 1 To i - 1
%o A308731         Cells(i, j) = Cells(i, i) + i - j
%o A308731         Cells(j, i) = Cells(i, j)
%o A308731     Next j
%o A308731 Next i
%o A308731 For i = 1 To n
%o A308731     Sum = 0
%o A308731     For k = 1 To i
%o A308731         For j = 1 To i
%o A308731             Sum = Sum + Cells(k, j)
%o A308731             Cells(i, n + 1) = Sum
%o A308731         Next j
%o A308731     Next k
%o A308731 Next i
%o A308731 End Sub
%o A308731 (PARI) M(i,j) = if (i>=j, prime(i)+i-j, M(j,i));
%o A308731 a(n) = sum(i=1, n, vecsum(vector(n, k, M(i,k)))); \\ _Michel Marcus_, Jun 21 2019
%o A308731 (PARI) A308731_first(N)=vector(N, n, N+=if(n>1, prime(n)*(2*n-1)+n*(n-1), 2-N)) \\ This is a more efficient way to compute the list [a(1), ..., a(N)]
%o A308731 apply( {A308731(n)=sum(k=1,n,prime(k)*(2*k-1))+2*binomial(n+1,3)}, [1..20]) \\ _M. F. Hasler_, May 08 2025
%Y A308731 Cf. A000040, A007290 (partial sums of n(n-1)), A316322 (sum of "pile of primes").
%K A308731 nonn
%O A308731 1,1
%A A308731 _Ali Sada_, Jun 20 2019
%E A308731 Edited by _Michel Marcus_, Jun 21 2019