A308732 Primes p such that the smallest possible number of 1's in binary representation of a multiple of p equals 3.
7, 23, 47, 71, 73, 79, 103, 151, 167, 191, 199, 239, 263, 271, 311, 337, 359, 367, 383, 439, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 887, 919, 937, 967, 983, 991, 1031, 1039, 1063, 1087, 1151, 1223, 1231, 1279, 1289, 1303
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Christian Elsholtz, Almost all primes have a multiple of small Hamming weight, Bull. Aust. Math. Soc. 94 (2016), 224-235.
- Eugen J. Ionascu, Florian Luca, and Thomas Merino, On the average value of the minimal Hamming multiple, arXiv:2412.10839 [math.NT], 2024. See pp. 4, 17.
- Kenneth B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arithmetica 38 (1980), 117-128.
Crossrefs
Cf. A014662, which enumerates the same sequence for two 1's instead of three.
Programs
-
Maple
filter:= proc(n) local S, r, j; if not isprime(n) then return false fi; r:= numtheory:-order(2,n); if r::even then return false fi; S:= {seq(2 &^ j mod n, j=1..r)}; S intersect map(t -> -t-1 mod n, S) <> {} end proc: select(filter, [seq(i,i=3..2000, 2)]); # Robert Israel, Jun 23 2019
Comments