This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308746 #12 Jun 25 2019 01:40:15 %S A308746 1,1,2,2,3,1,1,1,2,1,1,1,1,3,1,2,4,2,5,1,6,7,1,1,1,1,1,3,1,1,1,2,1,3, %T A308746 1,1,1,1,2,4,1,1,1,1,1,1,1,1,4,1,1,5,1,1,1,2,2,2,2,2,6,2,2,2,4,2,7,1, %U A308746 2,2,2,2,1,1,8,2,2,3,3,9,3,3,3,10,2,2,2 %N A308746 a(1) = 1, and for n > 1, a(n) is the greatest k > 0 such that (a(1), ..., a(n-1)) can be split into k chunks of contiguous terms and those chunks have the same sum. %C A308746 For any n > 0, a(n) divides Sum_{k = 1..n-1} a(k). %C A308746 Is this sequence unbounded? %H A308746 Rémy Sigrist, <a href="/A308746/b308746.txt">Table of n, a(n) for n = 1..10000</a> %H A308746 Rémy Sigrist, <a href="/A308746/a308746.png">Colored scatterplot of the first 1000000 terms</a> (where the color is function of Sum_{k = 1..n-1} a(k) / a(n)) %H A308746 Rémy Sigrist, <a href="/A308746/a308746.gp.txt">PARI program for A308746</a> %e A308746 The first terms, alongside the corresponding chunks, are: %e A308746 n a(n) Chunks (separated by pipes) %e A308746 -- ---- ------------------------------------- %e A308746 1 1 %e A308746 2 1 1 %e A308746 3 2 1|1 %e A308746 4 2 1 1|2 %e A308746 5 3 1 1|2|2 %e A308746 6 1 1 1 2 2 3 %e A308746 7 1 1 1 2 2 3 1 %e A308746 8 1 1 1 2 2 3 1 1 %e A308746 9 2 1 1 2 2|3 1 1 1 %e A308746 10 1 1 1 2 2 3 1 1 1 2 %e A308746 11 1 1 1 2 2 3 1 1 1 2 1 %e A308746 12 1 1 1 2 2 3 1 1 1 2 1 1 %e A308746 13 1 1 1 2 2 3 1 1 1 2 1 1 1 %e A308746 14 3 1 1 2 2|3 1 1 1|2 1 1 1 1 %e A308746 15 1 1 1 2 2 3 1 1 1 2 1 1 1 1 3 %e A308746 16 2 1 1 2 2 3 1 1|1 2 1 1 1 1 3 1 %e A308746 17 4 1 1 2 2|3 1 1 1|2 1 1 1 1|3 1 2 %e A308746 18 2 1 1 2 2 3 1 1 1 2|1 1 1 1 3 1 2 4 %e A308746 19 5 1 1 2 2|3 1 1 1|2 1 1 1 1|3 1 2|4 2 %e A308746 20 1 1 1 2 2 3 1 1 1 2 1 1 1 1 3 1 2 4 2 5 %o A308746 (PARI) See Links section. %Y A308746 Cf. A095258. %K A308746 nonn %O A308746 1,3 %A A308746 _Rémy Sigrist_, Jun 21 2019