This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308748 #41 Apr 14 2020 21:56:21 %S A308748 0,0,0,0,0,0,9,12,15,18,23,28,32,38,44,50,57 %N A308748 a(n) is the maximum number of pentagonal polyiamond divisions of an equilateral triangle of order n when tiling with the two smallest pentagonal polyiamonds. %C A308748 The two smallest pentagonal polyiamonds contain five and six unit triangles. All internal angles are either 60, 120 or 240 degrees. %C A308748 Order five and six equilateral triangle pentagonal tilings require pentagonal tiles larger than hexiamonds. %H A308748 Craig Knecht, <a href="/A308748/a308748_6.png">Close necks type 1 and type 2.</a> %H A308748 Craig Knecht, <a href="/A308748/a308748_7.png">Close neck cluster tiling.</a> %H A308748 Craig Knecht, <a href="/A308748/a308748_8.png">Close neck sphinx tile clusters.</a> %H A308748 Craig Knecht, <a href="/A308748/a308748.png">Example for the sequence</a>. %H A308748 Craig Knecht, <a href="/A308748/a308748_2.png">Neck connected pathways</a>. %H A308748 Craig Knecht, <a href="/A308748/a308748_5.png">Pentagonal tiling of T5, T6</a>. %H A308748 Craig Knecht, <a href="/A308748/a308748_1.png">Tiling with larger pentagonals</a>. %H A308748 Walter Trump, <a href="/A259711/a259711_1.pdf">Number of positions of a polyiamond tile in a triangle frame</a>. %H A308748 Walter Trump, <a href="/A308595/a308595.pdf">Pentagonal polyiamonds</a>. %Y A308748 Cf. A002061. %K A308748 nonn,more %O A308748 1,7 %A A308748 _Craig Knecht_, Jun 21 2019