This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308751 #15 Jan 25 2022 16:01:05 %S A308751 2,1,3,2,2,2,1,3,9,16,5,3,2,17,9,24,10,25,22,13,46,7,4,2,47,45,23,16, %T A308751 16,3,2,17,51,72,26,9,73,111,160,49,46,5,47,72,20,146,63,112,28,113, %U A308751 174,95,80,63,54,160,46,11,47,72,14,12,73,130,37,131,152,51 %N A308751 a(n) = (2 + Sum_{k = 1..n-1} A095258(k)) / A095258(n). %C A308751 Are there infinitely many 1's in this sequence? %H A308751 Rémy Sigrist, <a href="/A308751/b308751.txt">Table of n, a(n) for n = 1..10000</a> %H A308751 Rémy Sigrist, <a href="/A308751/a308751.gp.txt">PARI program for A308751</a> %e A308751 a(3) = (2 + A095258(1) + A095258(2)) / A095258(3) = (2 + 1 + 3) / 2 = 3. %o A308751 (PARI) See Links section. %o A308751 (Python) %o A308751 from itertools import islice %o A308751 from sympy import divisors %o A308751 def A308751_gen(): # generator of terms %o A308751 bset, s = {1}, 3 %o A308751 yield 2 %o A308751 while True: %o A308751 for d in divisors(s): %o A308751 if d not in bset: %o A308751 yield s//d %o A308751 bset.add(d) %o A308751 s += d %o A308751 break %o A308751 A308751_list = list(islice(A308751_gen(),30)) # _Chai Wah Wu_, Jan 25 2022 %Y A308751 Cf. A095258. %K A308751 nonn,look %O A308751 1,1 %A A308751 _Rémy Sigrist_, Jun 22 2019