This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308753 #25 May 08 2021 06:26:17 %S A308753 1,5,82,4101,390626,60466262,13841287202,4398046515205, %T A308753 1853020188851923,1000000000000390630,672749994932560009202, %U A308753 552061438912436478063702,542800770374370512771595362,629983141281877223617054459942 %N A308753 a(n) = Sum_{d|n} d^(2*(d-1)). %H A308753 Seiichi Manyama, <a href="/A308753/b308753.txt">Table of n, a(n) for n = 1..215</a> %F A308753 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k-3))) = Sum_{k>=1} a(k)*x^k/k. %F A308753 G.f.: Sum_{k>=1} k^(2*(k-1)) * x^k/(1 - x^k). %t A308753 a[n_] := DivisorSum[n, #^(2*(# - 1)) &]; Array[a, 14] (* _Amiram Eldar_, May 08 2021 *) %o A308753 (PARI) {a(n) = sumdiv(n, d, d^(2*(d-1)))} %o A308753 (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-3))))) %o A308753 (PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*(k-1))*x^k/(1-x^k))) %Y A308753 Column k=2 of A308701. %Y A308753 Cf. A283533, A308692, A308696, A308755, A308756. %K A308753 nonn %O A308753 1,2 %A A308753 _Seiichi Manyama_, Jun 22 2019