This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308757 #19 May 08 2021 06:26:29 %S A308757 1,2,28,4098,1953126,2176782365,4747561509944,18014398509486082, %T A308757 109418989131512359237,1000000000000000001953127, %U A308757 13109994191499930367061460372,237376313799769806328952468217885,5756130429098929077956071497934208654 %N A308757 a(n) = Sum_{d|n} d^(3*(d-2)). %H A308757 Seiichi Manyama, <a href="/A308757/b308757.txt">Table of n, a(n) for n = 1..154</a> %F A308757 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(3*k-7))) = Sum_{k>=1} a(k)*x^k/k. %F A308757 G.f.: Sum_{k>=1} k^(3*(k-2)) * x^k/(1 - x^k). %t A308757 a[n_] := DivisorSum[n, #^(3*(# - 2)) &]; Array[a, 13] (* _Amiram Eldar_, May 08 2021 *) %o A308757 (PARI) {a(n) = sumdiv(n, d, d^(3*(d-2)))} %o A308757 (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k-7))))) %o A308757 (PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(3*(k-2))*x^k/(1-x^k))) %Y A308757 Cf. A283535, A308697. %K A308757 nonn %O A308757 1,2 %A A308757 _Seiichi Manyama_, Jun 22 2019