cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308775 Sum of all the parts in the partitions of n into 4 parts.

This page as a plain text file.
%I A308775 #15 Sep 07 2019 09:47:29
%S A308775 0,0,0,0,4,5,12,21,40,54,90,121,180,234,322,405,544,663,846,1026,1280,
%T A308775 1512,1848,2162,2592,3000,3536,4050,4732,5365,6180,6975,7968,8910,
%U A308775 10098,11235,12636,13986,15618,17199,19120,20951,23142,25284,27808,30240,33120
%N A308775 Sum of all the parts in the partitions of n into 4 parts.
%H A308775 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A308775 a(n) = n * A026810(n).
%F A308775 a(n) = A308733(n) + A308758(n) + A308759(n) + A308760(n).
%F A308775 Conjectures from _Colin Barker_, Jun 24 2019: (Start)
%F A308775 G.f.: x^4*(4 + 5*x + 8*x^2 + 8*x^3 + 10*x^4 + 7*x^5 + 6*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
%F A308775 a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
%F A308775 (End)
%e A308775 Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
%e A308775                                                          1+1+1+9
%e A308775                                                          1+1+2+8
%e A308775                                                          1+1+3+7
%e A308775                                                          1+1+4+6
%e A308775                                              1+1+1+8     1+1+5+5
%e A308775                                              1+1+2+7     1+2+2+7
%e A308775                                  1+1+1+7     1+1+3+6     1+2+3+6
%e A308775                                  1+1+2+6     1+1+4+5     1+2+4+5
%e A308775                                  1+1+3+5     1+2+2+6     1+3+3+5
%e A308775                      1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
%e A308775          1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
%e A308775          1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
%e A308775          1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
%e A308775          1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
%e A308775          2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
%e A308775 --------------------------------------------------------------------------
%e A308775   n  |      8           9          10          11          12        ...
%e A308775 --------------------------------------------------------------------------
%e A308775 a(n) |     40          54          90         121         180        ...
%e A308775 --------------------------------------------------------------------------
%e A308775 - _Wesley Ivan Hurt_, Sep 07 2019
%t A308775 Table[n*Sum[Sum[Sum[1, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
%Y A308775 Cf. A026810, A308733, A308758, A308759, A308760.
%K A308775 nonn
%O A308775 0,5
%A A308775 _Wesley Ivan Hurt_, Jun 23 2019