cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308778 Central element(s) in the period of the continued fraction expansion of sqrt(n), or 0 if no such element exists, or -1 if n is a square.

This page as a plain text file.
%I A308778 #18 Nov 05 2019 00:57:30
%S A308778 -1,-1,0,1,-1,0,2,1,1,-1,0,3,2,1,2,1,-1,0,4,3,2,2,4,3,1,-1,0,5,2,1,2,
%T A308778 5,1,2,4,1,-1,0,6,4,3,2,2,5,2,2,6,5,1,-1,0,7,2,1,6,2,2,4,1,7,2,2,6,1,
%U A308778 -1,0,8,7,4,4,2,7,2,5,1,1,4,2,4,7,1,-1,0
%N A308778 Central element(s) in the period of the continued fraction expansion of sqrt(n), or 0 if no such element exists, or -1 if n is a square.
%C A308778 The continued fraction expansion of sqrt(n) is periodic (where n is no square), and the period splits in two halves which are mirrored around the center. With r = floor(sqrt(n)) the expansion takes one of the forms:
%C A308778   [r; i, j, k, ..., m, m, ..., k, j, i, 2*r] (odd period length) or
%C A308778   [r; i, j, k, ..., m, ..., k, j, i, 2*r] (even period length)
%C A308778   [r; 2*r] (empty symmetric part, for n = r^2 + 1)
%C A308778 This sequence lists the central element(s) m, or 0 for n = r^2 + 1, or -1 for n = r^2.
%C A308778 a(k^2-1) = 1 for k >= 2. - _Robert Israel_, Nov 04 2019
%H A308778 Robert Israel, <a href="/A308778/b308778.txt">Table of n, a(n) for n = 0..10000</a>
%H A308778 Georg Fischer, <a href="https://github.com/gfis/fasces/blob/master/oeis/cfsqrt/sqrt20k.txt">Table of the continued fractions of sqrt(0..20000)</a>
%H A308778 Oskar Perron, <a href="https://archive.org/details/dielehrevondenk00perrgoog/page/n5">Die Lehre von den Kettenbrüchen</a>, B. G. Teubner (1913), section 24, p. 87 ff.
%e A308778 CF(sqrt(2906)) = [53;1,9,1,3,1,3,1,1,14,1,5,2,2,5,1,14,1,1,3,1,3,1,9,1,106], odd period, two central elements, a(2906) = 2.
%p A308778 f:= proc(n) local L,m;
%p A308778   if issqr(n) then return -1
%p A308778   elif issqr(n-1) then return 0
%p A308778   fi;
%p A308778   L:= numtheory:-cfrac(sqrt(n),periodic,quotients);
%p A308778   m:= nops(L[2]);
%p A308778   L[2][floor(m/2)]
%p A308778 end proc:
%p A308778 map(f, [$0..100]); # _Robert Israel_, Nov 04 2019
%t A308778 Array[Which[IntegerQ@ Sqrt@ #, -1, IntegerQ@ Sqrt[# - 1], 0, True, #[[Floor[Length[#]/2]]] &@ Last@ ContinuedFraction@ Sqrt@ #] &, 83, 0] (* _Michael De Vlieger_, Jul 07 2019 *)
%Y A308778 Cf. A031509-A031688.
%K A308778 sign,look
%O A308778 0,7
%A A308778 _Georg Fischer_, Jun 24 2019