This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308780 #16 May 04 2024 14:57:49 %S A308780 1,2,1,3,2,1,4,2,1,5,2,1,6,4,3,2,1,7,2,1,8,4,2,1,9,6,3,2,1,10,5,4,2,1, %T A308780 11,2,1,12,8,6,4,3,2,1,13,2,1,14,7,4,2,1,15,10,6,5,3,2,1,16,8,4,2,1, %U A308780 17,2,1,18,12,9,6,4,3,2,1,19,2,1 %N A308780 First element of the periodic part of the continued fraction expansion of sqrt(k), where the period is 2. %H A308780 Georg Fischer, <a href="https://github.com/gfis/fasces/blob/master/oeis/cfsqrt/sqrt20k.txt">Table of the continued fractions of sqrt(0..20000)</a>. %e A308780 The continued fractions for sqrt(3..8) are: %e A308780 3 1;1,2 %e A308780 4 2 (square) %e A308780 5 2;4 %e A308780 6 2;2,4 %e A308780 7 2;1,1,1,4 %e A308780 8 2;1,4 %e A308780 Those for 3, 6 and 8 have a period of 2, therefore the sequence starts with 1, 2, 1. %p A308780 s := proc(n) if not issqr(n) then numtheory[cfrac](sqrt(n), 'periodic', 'quotients')[2]; if nops(%) = 2 then return %[1] fi fi; NULL end: %p A308780 seq(s(n), n=1..399); # _Peter Luschny_, Jul 01 2019 %t A308780 Reap[For[k = 3, k <= 399, k++, If[!IntegerQ[Sqrt[k]], cf = ContinuedFraction[Sqrt[k]]; If[Length[cf[[2]]] == 2, Sow[cf[[2, 1]]]]]]][[2, 1]] (* _Jean-François Alcover_, May 03 2024 *) %t A308780 (* Second program (much simpler): *) %t A308780 Table[2 a/b, {a, 1, 20}, {b, Rest@Divisors[2 a]}] // Flatten (* _Jean-François Alcover_, May 04 2024, after a remark by _Kevin Ryde_ *) %Y A308780 Cf. A013642, A308778. %K A308780 nonn %O A308780 1,2 %A A308780 _Georg Fischer_, Jun 24 2019