A308785 Primes p such that A001175(p) = 2*(p+1)/7.
307, 797, 1483, 3023, 4157, 4283, 6397, 6733, 7027, 7433, 7867, 9337, 9743, 9883, 10177, 10303, 10597, 11423, 12823, 14293, 18493, 19963, 20593, 20873, 24247, 24793, 25703, 28433, 29917, 30113, 31387, 31723, 31793, 32353, 33347, 34537, 34747, 37057, 38653, 38723
Offset: 1
Keywords
Links
- Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
- Wikipedia, Pisano period
Crossrefs
Programs
-
Mathematica
Select[Prime@ Range[1000], Function[n, Mod[Last@ NestWhile[{Mod[#2, n], Mod[#1 + #2, n], #3 + 1} & @@ # &, {1, 1, 1}, #[[1 ;; 2]] != {0, 1} &], n] == Mod[2 (n + 1)/7, n] ]] (* Michael De Vlieger, Mar 31 2021, after Leo C. Stein at A001175 *)
-
PARI
Pisano_for_inert_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==-1, my(v=divisors(2*(p+1))); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) forprime(p=2, 40000, if(Pisano_for_inert_prime(p)==2*(p+1)/7, print1(p, ", ")))
Comments