A308786 Primes p such that A001175(p) = 2*(p+1)/9.
233, 557, 953, 4013, 4733, 5147, 6983, 7307, 7883, 9377, 10133, 12923, 14867, 15767, 17747, 19403, 20753, 22877, 23813, 26387, 26783, 27737, 29483, 32057, 33533, 35117, 39383, 40013, 40787, 41543, 41903, 42767, 43613, 45557, 46187, 48473, 48563, 50993, 51263, 53927
Offset: 1
Keywords
Links
- Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
- Wikipedia, Pisano period
Crossrefs
Programs
-
PARI
Pisano_for_inert_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==-1, my(v=divisors(2*(p+1))); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) forprime(p=2, 55000, if(Pisano_for_inert_prime(p)==2*(p+1)/9, print1(p, ", ")))
Comments