cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308786 Primes p such that A001175(p) = 2*(p+1)/9.

Original entry on oeis.org

233, 557, 953, 4013, 4733, 5147, 6983, 7307, 7883, 9377, 10133, 12923, 14867, 15767, 17747, 19403, 20753, 22877, 23813, 26387, 26783, 27737, 29483, 32057, 33533, 35117, 39383, 40013, 40787, 41543, 41903, 42767, 43613, 45557, 46187, 48473, 48563, 50993, 51263, 53927
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord((1+sqrt(5))/2,p) = 2*(p+1)/9, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Also, primes p such that the least integer k > 0 such that M^k == I (mod p) is 2*(p+1)/9, where M = [{1, 1}, {1, 0}] and I is the identity matrix.
Also, primes p such that A001177(p) = (p+1)/9 or (p+1)/18. If p == 1 (mod 4), then A001177(p) = (p+1)/18, otherwise (p+1)/9.
Also, primes p such that ord(-(3+sqrt(5))/2,p) = (p+1)/9 or (p+1)/18. If p == 1 (mod 4), then ord(-(3+sqrt(5))/2,p) = (p+1)/18, otherwise (p+1)/9.
In general, let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p) (see the Wikipedia link below), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ...
If (b) holds, then the entry point of {T(n)} modulo p is (p+1)/r if p == 3 (mod 4) and (p+1)/(2r) if p == 1 (mod 4). Proof: let d = ord(u,p) = 2*(p+1)/r, d' = ord(-u^2,p), then (-u^2)^d' == (u^(-p-1)*u^2)^d == u^(d'*(-p+1)) (mod p), so d divides d'*(p-1), d' = d/gcd(d, p-1). It is easy to see that gcd(d, p-1) = 4 if p == 1 (mod 4) and 2 if p == 3 (mod 4).
Here k = 1, and this sequence gives primes such that (b) holds and r = 9. For k = 1, r cannot be a multiple of 5 because if 5 divides p+1 then p decomposes in K = Q[sqrt(5)], which contradicts with (b).
Number of terms below 10^N:
N | 1 mod 4 | 3 mod 4 | Total | Inert primes*
3 | 3 | 0 | 3 | 88
4 | 6 | 4 | 10 | 618
5 | 36 | 28 | 64 | 4813
6 | 313 | 300 | 613 | 39286
7 | 2563 | 2597 | 5160 | 332441
8 | 22377 | 22350 | 44727 | 2880969
* Here "Inert primes" means primes p > 2 such that Legendre(5,p) = -1, i.e., p == 2, 3 (mod 5).

Crossrefs

Similar sequences that give primes such that (b) holds: A071774 (r=1), A308784 (r=3), A308785 (r=7), this sequence (r=9).

Programs

  • PARI
    Pisano_for_inert_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==-1, my(v=divisors(2*(p+1))); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d]))))
    forprime(p=2, 55000, if(Pisano_for_inert_prime(p)==2*(p+1)/9, print1(p, ", ")))