This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308787 #22 Jul 02 2019 08:44:27 %S A308787 29,89,101,181,229,349,401,509,761,941,1021,1061,1109,1229,1249,1361, %T A308787 1409,1549,1621,1669,1709,1741,1789,1861,2029,2069,2089,2441,2621, %U A308787 2801,2861,3089,3169,3301,3389,3461,3581,3821,3881,3989,4001,4049,4201,4229,4549,4729 %N A308787 Primes p such that A001175(p) = (p-1)/2. %C A308787 Primes p such that ord((1+sqrt(5))/2,p) = (p-1)/2, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer. %C A308787 Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p). %C A308787 For an odd prime p: %C A308787 (a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...; %C A308787 (b) if p is inert in K, then u^(p+1) == -1 (mod p), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ... %C A308787 Here k = 1, and this sequence gives primes such that (a) holds and s = 2. %C A308787 Note that the Pisano period of {T(n)} modulo p must be even, so we have p == 1 (mod 4) for primes p in this sequence. %C A308787 The number of terms below 10^N: %C A308787 N | Number | Decomposing primes* %C A308787 3 | 10 | 78 %C A308787 4 | 89 | 609 %C A308787 5 | 630 | 4777 %C A308787 6 | 5207 | 39210 %C A308787 7 | 44296 | 332136 %C A308787 8 | 382966 | 2880484 %C A308787 * Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5). %t A308787 pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k+1], n] == 1, Return[k]]]; %t A308787 Reap[For[p = 2, p <= 4729, p = NextPrime[p], If[pn[p] == (p-1)/2, Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Jul 01 2019 *) %o A308787 (PARI) Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) %o A308787 forprime(p=2, 4800, if(Pisano_for_decomposing_prime(p)==(p-1)/2, print1(p, ", "))) %Y A308787 Similar sequences that give primes such that (a) holds: A003147/{5} (s=1), this sequence (s=2), A308788 (s=3), A308789 (s=4), A308790 (s=5), A308791 (s=6), A308792 (s=7), A308793 (s=8), A308794 (s=9). %K A308787 nonn %O A308787 1,1 %A A308787 _Jianing Song_, Jun 25 2019