cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308788 Primes p such that A001175(p) = (p-1)/3.

Original entry on oeis.org

139, 151, 331, 619, 661, 811, 829, 1069, 1231, 1279, 1291, 1381, 1471, 1579, 1699, 1999, 2239, 2251, 2281, 2371, 2659, 2689, 2749, 3271, 3331, 3391, 3499, 3631, 3919, 4051, 4159, 4231, 4261, 4759, 4909, 5059, 5581, 5701, 5821, 5839, 6079, 6229, 6469, 6619, 6691
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord((1+sqrt(5))/2,p) = (p-1)/3, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 3.
The number of terms below 10^N:
N | Number | Decomposing primes*
3 | 7 | 78
4 | 64 | 609
5 | 455 | 4777
6 | 3688 | 39210
7 | 31412 | 332136
8 | 272318 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A003147/{5} (s=1), A308787 (s=2), this sequence (s=3), A308789 (s=4), A308790 (s=5), A308791 (s=6), A308792 (s=7), A308793 (s=8), A308794 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]];
    Reap[For[p = 2, p <= 6691, p = NextPrime[p], If[pn[p] == (p-1)/3, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 01 2019 *)
  • PARI
    Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d]))))
    forprime(p=2, 7000, if(Pisano_for_decomposing_prime(p)==(p-1)/3, print1(p, ", ")))