A308789 Primes p such that A001175(p) = (p-1)/4.
769, 809, 1049, 1289, 1721, 2729, 3049, 3929, 4289, 4649, 5009, 5441, 5689, 6361, 6961, 7321, 7841, 8209, 8329, 8369, 8681, 9689, 9769, 11161, 11489, 11969, 12049, 12281, 12601, 12721, 13649, 13721, 14969, 15241, 15569, 16649, 17489, 18329, 19961, 21169, 21881
Offset: 1
Keywords
Links
- Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]]; Reap[For[p=2, p <= 21881, p = NextPrime[p], If[pn[p] == (p-1)/4, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 01 2019 *)
-
PARI
Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) forprime(p=2, 22000, if(Pisano_for_decomposing_prime(p)==(p-1)/4, print1(p, ", ")))
Comments