A308791 Primes p such that A001175(p) = (p-1)/6.
541, 709, 2389, 3121, 3529, 4561, 4861, 5869, 7069, 8821, 9001, 10789, 12421, 12781, 13309, 14341, 14869, 16981, 18289, 19249, 19309, 19429, 19501, 20389, 20809, 20929, 21649, 22741, 23629, 24181, 25189, 26821, 27109, 27409, 28669, 30181, 30469, 30781, 30949, 31189
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]]; Reap[For[p = 2, p < 32000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
-
PARI
Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) forprime(p=2, 32000, if(Pisano_for_decomposing_prime(p)==(p-1)/6, print1(p, ", ")))
Comments