This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308792 #16 Jun 04 2021 03:13:19 %S A308792 2269,2731,2969,3739,4831,6091,6329,11159,11789,13049,13679,14281, %T A308792 14449,14771,16871,19559,20399,24179,26111,29191,31039,33181,33811, %U A308792 34511,34679,35911,40111,41651,42701,43961,49211,54881,55259,55721,56099,58129,60859,62819,66809 %N A308792 Primes p such that A001175(p) = (p-1)/7. %C A308792 Primes p such that ord((1+sqrt(5))/2,p) = (p-1)/7, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer. %C A308792 Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p). %C A308792 For an odd prime p: %C A308792 (a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...; %C A308792 (b) if p is inert in K, then u^(p+1) == -1 (mod p), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ... %C A308792 Here k = 1, and this sequence gives primes such that (a) holds and s = 7. %C A308792 Number of terms below 10^N: %C A308792 N | Number | Decomposing primes* %C A308792 3 | 0 | 78 %C A308792 4 | 7 | 609 %C A308792 5 | 55 | 4777 %C A308792 6 | 507 | 39210 %C A308792 7 | 4144 | 332136 %C A308792 8 | 36319 | 2880484 %C A308792 * Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5). %H A308792 Amiram Eldar, <a href="/A308792/b308792.txt">Table of n, a(n) for n = 1..10000</a> %t A308792 pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]]; %t A308792 Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 7] == 1, If[pn[p] == (p - 1)/7, Print[p]; Sow[p]]]]][[2, 1]] (* _Jean-François Alcover_, Jul 05 2019 *) %o A308792 (PARI) Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) %o A308792 forprime(p=2, 67000, if(Pisano_for_decomposing_prime(p)==(p-1)/7, print1(p, ", "))) %Y A308792 Similar sequences that give primes such that (a) holds: A003147/{5} (s=1), A308787 (s=2), A308788 (s=3), A308789 (s=4), A308790 (s=5), A308791 (s=6), this sequence (s=7), A308793 (s=8), A308794 (s=9). %K A308792 nonn %O A308792 1,1 %A A308792 _Jianing Song_, Jun 25 2019