This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308793 #13 Jul 05 2019 16:02:08 %S A308793 1009,3329,8081,12401,15889,19681,25601,25841,26641,32321,33329,33521, %T A308793 34369,36929,41681,42929,47809,53569,55249,64849,70289,74209,76081, %U A308793 85361,86209,87649,88129,88801,90001,93089,93329,97649,98689,99089,100049,101489,107441,117841 %N A308793 Primes p such that A001175(p) = (p-1)/8. %C A308793 Primes p such that ord((1+sqrt(5))/2,p) = (p-1)/8, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer. %C A308793 Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p). %C A308793 For an odd prime p: %C A308793 (a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...; %C A308793 (b) if p is inert in K, then u^(p+1) == -1 (mod p), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ... %C A308793 Here k = 1, and this sequence gives primes such that (a) holds and s = 8. %C A308793 Note that the Pisano period of {T(n)} modulo p must be even, so we have p == 1 (mod 16) for primes p in this sequence. %C A308793 Number of terms below 10^N: %C A308793 N | Number | Decomposing primes* %C A308793 3 | 0 | 78 %C A308793 4 | 3 | 609 %C A308793 5 | 34 | 4777 %C A308793 6 | 315 | 39210 %C A308793 7 | 2751 | 332136 %C A308793 8 | 23878 | 2880484 %C A308793 * Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5). %t A308793 pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]]; %t A308793 Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 8] == 1, If[pn[p] == (p - 1)/8, Print[p]; Sow[p]]]]][[2, 1]] (* _Jean-François Alcover_, Jul 05 2019 *) %o A308793 (PARI) Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) %o A308793 forprime(p=2, 118000, if(Pisano_for_decomposing_prime(p)==(p-1)/8, print1(p, ", "))) %Y A308793 Similar sequences that give primes such that (a) holds: A003147/{5} (s=1), A308787 (s=2), A308788 (s=3), A308789 (s=4), A308790 (s=5), A308791 (s=6), A308792 (s=7), this sequence (s=8), A308794 (s=9). %K A308793 nonn %O A308793 1,1 %A A308793 _Jianing Song_, Jun 25 2019