A308795 Primes p such that A001177(p) = (p-1)/2.
29, 41, 101, 181, 229, 241, 349, 409, 449, 509, 569, 601, 641, 929, 941, 1021, 1061, 1109, 1129, 1201, 1229, 1321, 1481, 1489, 1549, 1609, 1621, 1669, 1709, 1741, 1789, 1801, 1861, 1889, 2029, 2069, 2129, 2609, 2621, 2861, 3209, 3301, 3361, 3389, 3449, 3461, 3581
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]]; Reap[For[p = 2, p < 3600, p = NextPrime[p], If[pn[p] == (p - 1)/2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
-
PARI
Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d])))) forprime(p=2, 3600, if(Entry_for_decomposing_prime(p)==(p-1)/2, print1(p, ", ")))
Comments