This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308799 #11 Jul 05 2019 16:01:54 %S A308799 541,709,2281,2389,2689,4861,5869,7069,8089,8761,8821,8929,9049,9601, %T A308799 10009,10321,10789,12421,12781,13309,13681,14341,14869,14929,16981, %U A308799 19309,19429,19501,19609,20389,21841,22741,23629,24181,24481,25189,26821,27109,27361,27961 %N A308799 Primes p such that A001177(p) = (p-1)/6. %C A308799 Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/6, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer. %C A308799 Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p). %C A308799 For an odd prime p: %C A308799 (a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...; %C A308799 (b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ... %C A308799 Here k = 1, and this sequence gives primes such that (a) holds and s = 6. For even s, all terms are congruent to 1 modulo 4. %C A308799 Number of terms below 10^N: %C A308799 N | Number | Decomposing primes* %C A308799 3 | 2 | 78 %C A308799 4 | 14 | 609 %C A308799 5 | 147 | 4777 %C A308799 6 | 1216 | 39210 %C A308799 7 | 10477 | 332136 %C A308799 8 | 90720 | 2880484 %C A308799 * Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5). %t A308799 pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]]; %t A308799 Reap[For[p = 2, p < 28000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* _Jean-François Alcover_, Jul 05 2019 *) %o A308799 (PARI) Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d])))) %o A308799 forprime(p=2, 28000, if(Entry_for_decomposing_prime(p)==(p-1)/6, print1(p, ", "))) %Y A308799 Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), this sequence (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9). %K A308799 nonn %O A308799 1,1 %A A308799 _Jianing Song_, Jun 25 2019