This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308807 #29 Feb 06 2022 18:04:19 %S A308807 5,22,103,504,2505,12506,62507,312508,1562509,7812510,39062511, %T A308807 195312512,976562513,4882812514,24414062515,122070312516,610351562517, %U A308807 3051757812518,15258789062519,76293945312520,381469726562521,1907348632812522,9536743164062523 %N A308807 a(n) = 4*5^(n-1) + n. %C A308807 The last n decimal digits of 2^a(n) form the number 2^n. %H A308807 Colin Barker, <a href="/A308807/b308807.txt">Table of n, a(n) for n = 1..1000</a> %H A308807 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-11,5). %F A308807 a(n) = A005054(n) + n. %F A308807 From _Colin Barker_, Jun 26 2019: (Start) %F A308807 G.f.: x*(5 - 13*x + 4*x^2) / ((1 - x)^2*(1 - 5*x)). %F A308807 a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n>3. %F A308807 (End) %F A308807 Conjectures confirmed by _Robert Israel_, Jun 28 2019 %e A308807 a(1) = 5, 2^5 = 32, the last digit of 32 is 2, which is 2^1. %e A308807 a(2) = 22, 2^22 = 4194304, the last 2 digits of 4194304 are 04, which is 2^2. %p A308807 seq(4*5^(n-1) + n, n=1..30); # _Robert Israel_, Jun 28 2019 %t A308807 Table[4*5^(n-1)+n,{n,30}] (* or *) LinearRecurrence[{7,-11,5},{5,22,103},30] (* _Harvey P. Dale_, Jun 27 2020 *) %o A308807 (PARI) Vec(x*(5 - 13*x + 4*x^2) / ((1 - x)^2*(1 - 5*x)) + O(x^25)) \\ _Colin Barker_, Jun 29 2019 %K A308807 nonn,easy %O A308807 1,1 %A A308807 _Clive Tooth_, Jun 25 2019