This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308811 #54 Jul 28 2019 21:46:24 %S A308811 1,2,3,4,8,10,15,16,32,64,128,136,170,255,256,512,1024,2048,4096,8192, %T A308811 16384,32768,32896,34952,43690,65535,65536,131072,262144,524288, %U A308811 1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728 %N A308811 Numbers k such that the binary plot of the list of divisors of k has reflection symmetry. %C A308811 The sequence is infinite as it contains every power of 2 (A000079). %C A308811 The product of the first five Fermat primes (A019434), 4294967295 = 3 * 5 * 17 * 257 * 65537, is also a member of this sequence. %C A308811 Every term belongs to A135772. %C A308811 The first 48 terms are all of the form Sum_{i=1..t} 2^(k*t-1) for some k > 0 and t > 0 (see binary plot in Links section). %H A308811 Rémy Sigrist, <a href="/A308811/a308811.png">Binary plot of the first 48 terms</a> %F A308811 A295368(a(n)) = a(n). %e A308811 Regarding 170: %e A308811 - the divisors of 170 are: 1, 2, 5, 10, 17, 34, 85, 170, %e A308811 - in binary: "1", "10", "101", "1010", "10001", "100010", "1010101", "10101010", %e A308811 - the corresponding binary plot is: %e A308811 . 1 . # %e A308811 . 1 0 . # %e A308811 . 1 0 1 . # # %e A308811 . 1 0 1 0 . # # %e A308811 1 0 0 0 1 # . # %e A308811 1 0 0 0 1 0 # . # %e A308811 1 0 1 0 1 0 1 # # # . # %e A308811 1 0 1 0 1 0 1 0 # # # # . %e A308811 . . %e A308811 . . %e A308811 - this binary plot has reflection symmetry, %e A308811 - hence 170 belongs to this sequence. %o A308811 (PARI) is(n) = { my (d=Vecrev(divisors(n))); if (#binary(d[1])==#d, for (b=0, #d-1, my (t=0); for (i=1, #d, if (bittest(d[i], b), t+=2^(i-1))); if (t!=d[b+1], return (0))); return (1), return (0)) } %Y A308811 Cf. A000079, A019434, A135772, A295368. %K A308811 nonn,base %O A308811 1,2 %A A308811 _Rémy Sigrist_, Jul 08 2019