This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308822 #11 Sep 09 2019 01:41:55 %S A308822 0,0,0,0,0,5,6,14,24,45,70,110,156,234,322,450,592,799,1026,1330,1680, %T A308822 2121,2618,3243,3936,4800,5746,6885,8148,9657,11310,13237,15360,17820, %U A308822 20502,23590,26928,30747,34884,39546,44600,50266,56364,63167,70488,78615 %N A308822 Sum of all the parts in the partitions of n into 5 parts. %H A308822 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308822 a(n) = n * A026811(n). %F A308822 a(n) = A308823(n) + A308824(n) + A308825(n) + A308826(n) + A308827(n). %e A308822 The partitions of n into 5 parts for n = 10, 11, .. %e A308822 1+1+1+1+10 %e A308822 1+1+1+2+9 %e A308822 1+1+1+3+8 %e A308822 1+1+1+4+7 %e A308822 1+1+1+5+6 %e A308822 1+1+1+1+9 1+1+2+2+8 %e A308822 1+1+1+2+8 1+1+2+3+7 %e A308822 1+1+1+3+7 1+1+2+4+6 %e A308822 1+1+1+4+6 1+1+2+5+5 %e A308822 1+1+1+5+5 1+1+3+3+6 %e A308822 1+1+1+1+8 1+1+2+2+7 1+1+3+4+5 %e A308822 1+1+1+2+7 1+1+2+3+6 1+1+4+4+4 %e A308822 1+1+1+3+6 1+1+2+4+5 1+2+2+2+7 %e A308822 1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6 %e A308822 1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5 %e A308822 1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5 %e A308822 1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4 %e A308822 1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4 %e A308822 1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6 %e A308822 1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5 %e A308822 1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4 %e A308822 1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4 %e A308822 2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3 %e A308822 -------------------------------------------------------------------------- %e A308822 n | 10 11 12 13 14 ... %e A308822 -------------------------------------------------------------------------- %e A308822 a(n) | 70 110 156 234 322 ... %e A308822 -------------------------------------------------------------------------- %e A308822 - _Wesley Ivan Hurt_, Sep 08 2019 %t A308822 Table[n*Sum[Sum[Sum[Sum[1, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 100}] %Y A308822 Cf. A026811, A308823, A308824, A308825, A308826, A308827. %K A308822 nonn %O A308822 0,6 %A A308822 _Wesley Ivan Hurt_, Jun 26 2019