cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308827 Sum of the largest parts of the partitions of n into 5 parts.

This page as a plain text file.
%I A308827 #10 Sep 13 2019 09:41:13
%S A308827 0,0,0,0,0,1,2,5,9,17,27,44,64,96,134,188,251,339,439,571,724,917,
%T A308827 1137,1411,1719,2097,2519,3023,3586,4253,4990,5848,6797,7891,9092,
%U A308827 10467,11966,13670,15526,17612,19880,22417,25159,28209,31502,35145,39061,43375
%N A308827 Sum of the largest parts of the partitions of n into 5 parts.
%H A308827 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A308827 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (n-i-j-k-l).
%F A308827 a(n) = A308822(n) - A308823(n) - A308824(n) - A308825(n) - A308826(n).
%e A308827 The partitions of n into 5 parts for n = 10, 11, ..
%e A308827                                                        1+1+1+1+10
%e A308827                                                         1+1+1+2+9
%e A308827                                                         1+1+1+3+8
%e A308827                                                         1+1+1+4+7
%e A308827                                                         1+1+1+5+6
%e A308827                                             1+1+1+1+9   1+1+2+2+8
%e A308827                                             1+1+1+2+8   1+1+2+3+7
%e A308827                                             1+1+1+3+7   1+1+2+4+6
%e A308827                                             1+1+1+4+6   1+1+2+5+5
%e A308827                                             1+1+1+5+5   1+1+3+3+6
%e A308827                                 1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
%e A308827                                 1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
%e A308827                                 1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
%e A308827                     1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
%e A308827                     1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
%e A308827                     1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
%e A308827         1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
%e A308827         1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
%e A308827         1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
%e A308827         1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
%e A308827         1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
%e A308827         1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
%e A308827         2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
%e A308827 --------------------------------------------------------------------------
%e A308827   n  |     10          11          12          13          14        ...
%e A308827 --------------------------------------------------------------------------
%e A308827 a(n) |     27          44          64          96         134        ...
%e A308827 --------------------------------------------------------------------------
%e A308827 - _Wesley Ivan Hurt_, Sep 12 2019
%t A308827 Table[Sum[Sum[Sum[Sum[n - i - j - k - l, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 100}]
%Y A308827 Cf. A026811, A308822, A308823, A308824, A308825, A308826.
%K A308827 nonn
%O A308827 0,7
%A A308827 _Wesley Ivan Hurt_, Jun 26 2019