This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308827 #10 Sep 13 2019 09:41:13 %S A308827 0,0,0,0,0,1,2,5,9,17,27,44,64,96,134,188,251,339,439,571,724,917, %T A308827 1137,1411,1719,2097,2519,3023,3586,4253,4990,5848,6797,7891,9092, %U A308827 10467,11966,13670,15526,17612,19880,22417,25159,28209,31502,35145,39061,43375 %N A308827 Sum of the largest parts of the partitions of n into 5 parts. %H A308827 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308827 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (n-i-j-k-l). %F A308827 a(n) = A308822(n) - A308823(n) - A308824(n) - A308825(n) - A308826(n). %e A308827 The partitions of n into 5 parts for n = 10, 11, .. %e A308827 1+1+1+1+10 %e A308827 1+1+1+2+9 %e A308827 1+1+1+3+8 %e A308827 1+1+1+4+7 %e A308827 1+1+1+5+6 %e A308827 1+1+1+1+9 1+1+2+2+8 %e A308827 1+1+1+2+8 1+1+2+3+7 %e A308827 1+1+1+3+7 1+1+2+4+6 %e A308827 1+1+1+4+6 1+1+2+5+5 %e A308827 1+1+1+5+5 1+1+3+3+6 %e A308827 1+1+1+1+8 1+1+2+2+7 1+1+3+4+5 %e A308827 1+1+1+2+7 1+1+2+3+6 1+1+4+4+4 %e A308827 1+1+1+3+6 1+1+2+4+5 1+2+2+2+7 %e A308827 1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6 %e A308827 1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5 %e A308827 1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5 %e A308827 1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4 %e A308827 1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4 %e A308827 1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6 %e A308827 1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5 %e A308827 1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4 %e A308827 1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4 %e A308827 2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3 %e A308827 -------------------------------------------------------------------------- %e A308827 n | 10 11 12 13 14 ... %e A308827 -------------------------------------------------------------------------- %e A308827 a(n) | 27 44 64 96 134 ... %e A308827 -------------------------------------------------------------------------- %e A308827 - _Wesley Ivan Hurt_, Sep 12 2019 %t A308827 Table[Sum[Sum[Sum[Sum[n - i - j - k - l, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 100}] %Y A308827 Cf. A026811, A308822, A308823, A308824, A308825, A308826. %K A308827 nonn %O A308827 0,7 %A A308827 _Wesley Ivan Hurt_, Jun 26 2019