cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308839 Sum of all the parts in the partitions of n into 5 squarefree parts.

This page as a plain text file.
%I A308839 #11 Sep 16 2019 21:32:10
%S A308839 0,0,0,0,0,5,6,14,16,36,50,77,84,130,154,225,240,340,396,532,580,777,
%T A308839 858,1104,1176,1525,1638,2052,2156,2697,2910,3503,3680,4455,4760,5635,
%U A308839 5904,7030,7448,8736,9120,10701,11298,13072,13552,15795,16560,18988,19776
%N A308839 Sum of all the parts in the partitions of n into 5 squarefree parts.
%H A308839 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A308839 a(n) = n * Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2, where mu is the Möbius function (A008683).
%F A308839 a(n) = n * A308840(n).
%e A308839 The partitions of n into 5 parts for n = 10, 11, ..
%e A308839                                                        1+1+1+1+10
%e A308839                                                         1+1+1+2+9
%e A308839                                                         1+1+1+3+8
%e A308839                                                         1+1+1+4+7
%e A308839                                                         1+1+1+5+6
%e A308839                                             1+1+1+1+9   1+1+2+2+8
%e A308839                                             1+1+1+2+8   1+1+2+3+7
%e A308839                                             1+1+1+3+7   1+1+2+4+6
%e A308839                                             1+1+1+4+6   1+1+2+5+5
%e A308839                                             1+1+1+5+5   1+1+3+3+6
%e A308839                                 1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
%e A308839                                 1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
%e A308839                                 1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
%e A308839                     1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
%e A308839                     1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
%e A308839                     1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
%e A308839         1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
%e A308839         1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
%e A308839         1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
%e A308839         1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
%e A308839         1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
%e A308839         1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
%e A308839         2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
%e A308839 --------------------------------------------------------------------------
%e A308839   n  |     10          11          12          13          14        ...
%e A308839 --------------------------------------------------------------------------
%e A308839 a(n) |     50          77          84         130         154        ...
%e A308839 --------------------------------------------------------------------------
%e A308839 - _Wesley Ivan Hurt_, Sep 16 2019
%t A308839 Table[n*Sum[Sum[Sum[Sum[MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2* MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
%Y A308839 Cf. A008683, A308840.
%K A308839 nonn
%O A308839 0,6
%A A308839 _Wesley Ivan Hurt_, Jun 28 2019