cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308859 Sum of the largest parts in the partitions of n into 5 primes.

This page as a plain text file.
%I A308859 #8 Nov 19 2021 12:17:58
%S A308859 0,0,0,0,0,0,0,0,0,0,2,3,3,8,8,15,17,17,19,35,30,50,54,61,62,102,79,
%T A308859 129,119,150,151,233,169,260,207,300,234,398,263,467,350,527,425,667,
%U A308859 391,768,518,839,606,1039,636,1233,774,1294,918,1612,947,1844,1102
%N A308859 Sum of the largest parts in the partitions of n into 5 primes.
%H A308859 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A308859 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l) * (n-i-j-k-l), where c = A010051.
%F A308859 a(n) = A308854(n) - A308855(n) - A308856(n) - A308857(n) - A308858(n).
%t A308859 Table[Sum[Sum[Sum[Sum[(n-i-j-k-l) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i - j - k - l] - PrimePi[n - i - j - k - l - 1]), {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
%Y A308859 Cf. A010051, A259195, A308854, A308855, A308856, A308857, A308858.
%K A308859 nonn
%O A308859 0,11
%A A308859 _Wesley Ivan Hurt_, Jun 28 2019