cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308869 Sum of the fifth largest parts in the partitions of n into 6 parts.

This page as a plain text file.
%I A308869 #7 Jun 29 2019 17:06:25
%S A308869 0,0,0,0,0,0,1,1,2,3,5,8,13,17,25,34,48,63,86,109,143,182,232,288,363,
%T A308869 442,547,662,804,961,1157,1368,1626,1909,2245,2613,3054,3525,4082,
%U A308869 4688,5388,6150,7031,7974,9059,10231,11560,12991,14614,16346,18300,20400
%N A308869 Sum of the fifth largest parts in the partitions of n into 6 parts.
%H A308869 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A308869 a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} l.
%F A308869 a(n) = A308867(n) - A308868(n) - A306670(n) - A306671(n) - A308872(n) - A308873(n).
%t A308869 Table[Sum[Sum[Sum[Sum[Sum[l, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
%Y A308869 Cf. A238340, A308867, A308868, A306670, A306671, A308872, A308873.
%K A308869 nonn
%O A308869 0,9
%A A308869 _Wesley Ivan Hurt_, Jun 29 2019