This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308872 #7 Jun 29 2019 17:06:53 %S A308872 0,0,0,0,0,0,1,1,3,5,10,15,27,37,59,82,120,160,227,293,396,508,664, %T A308872 832,1068,1314,1650,2012,2477,2980,3628,4314,5178,6111,7250,8477,9975, %U A308872 11566,13483,15543,17970,20577,23646,26907,30712,34785,39469,44472,50217 %N A308872 Sum of the second largest parts in the partitions of n into 6 parts. %H A308872 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308872 a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} i. %F A308872 a(n) = A308867(n) - A308868(n) - A308869(n) - A306670(n) - A306671(n) - A308873(n). %t A308872 Table[Sum[Sum[Sum[Sum[Sum[i, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}] %Y A308872 Cf. A238340, A308867, A308868, A308869, A306670, A306671, A308873. %K A308872 nonn %O A308872 0,9 %A A308872 _Wesley Ivan Hurt_, Jun 29 2019