cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308877 Expansion of e.g.f. (1 + log(1 - x))/(1 + 2*log(1 - x)).

This page as a plain text file.
%I A308877 #8 Jun 29 2019 13:33:27
%S A308877 1,1,5,38,386,4904,74776,1330272,27046848,618653280,15723024864,
%T A308877 439559609664,13405656582336,442915145716224,15759326934391296,
%U A308877 600783539885546496,24430204949876794368,1055516761826050203648,48286612866726631489536,2331682676308057000255488
%N A308877 Expansion of e.g.f. (1 + log(1 - x))/(1 + 2*log(1 - x)).
%F A308877 a(0) = 1; a(n) = Sum_{k=1..n} |Stirling1(n,k)| * 2^(k-1) * k!.
%F A308877 a(n) ~ n! * exp(n/2) / (4 * (exp(1/2) - 1)^(n+1)). - _Vaclav Kotesovec_, Jun 29 2019
%t A308877 nmax = 19; CoefficientList[Series[(1 + Log[1 - x])/(1 + 2 Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
%t A308877 Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] 2^(k - 1) k!, {k, 1, n}], {n, 1, 19}]]
%Y A308877 Cf. A001710, A002866, A008275, A011782, A050351, A088500, A320349, A308878.
%K A308877 nonn
%O A308877 0,3
%A A308877 _Ilya Gutkovskiy_, Jun 29 2019