A308881 Irregular array read by rows: row k (k>=1) contains k^2 numbers, formed by filling in a k X k square by upwards antidiagonals so entries in all rows, columns, diagonals, antidiagonals are distinct, and then reading that square across rows.
0, 0, 2, 1, 3, 0, 2, 1, 1, 3, 4, 2, 0, 5, 0, 2, 1, 5, 1, 3, 4, 0, 2, 0, 5, 1, 3, 1, 2, 4, 0, 2, 1, 5, 3, 1, 3, 4, 0, 6, 2, 0, 5, 1, 7, 3, 1, 2, 4, 0, 4, 5, 0, 3, 1, 0, 2, 1, 5, 3, 4, 1, 3, 4, 0, 7, 2, 2, 0, 5, 1, 6, 9, 3, 1, 2, 4, 0, 5, 4, 6, 0, 3, 1, 7, 5, 7, 8, 6, 4, 10
Offset: 1
Examples
The first eight squares are (here A=10, B=11, C=12): 0 -------- 02 13 -------- 021 134 205 -------- 0215 1340 2051 3124 -------- 02153 13406 20517 31240 45031 -------- 021534 134072 205169 312405 460317 57864A -------- 0215349 1340725 2051864 3124058 4603172 5786493 6432587 -------- 0215349A 13407258 20518643 31240786 4603152B 5786493C 64325879 756893A2 --------
Links
- I. V. Serov, Rows of first 32 squares, flattened (There are 1^2+2^2+...+32^2 = 11440 entries.)
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Comments