A308885
Positions of 0's on the spiral defined in A308884.
Original entry on oeis.org
0, 1, 2, 3, 20, 25, 30, 35, 36, 37, 40, 41, 42, 47, 48, 49, 54, 55, 56, 63, 65, 70, 79, 88, 94, 95, 110, 112, 114, 115, 121, 123, 125, 126, 132, 134, 137, 138, 141, 143, 144, 145, 147, 149, 150, 152, 154, 155, 156, 162, 165, 167, 168, 169, 175, 178, 180, 181, 182, 195, 197
Offset: 1
A308889
Positions of 4's on the spiral defined in A308884.
Original entry on oeis.org
148, 151, 217, 353, 658, 662, 663, 667, 685, 692, 715, 746, 1210, 1275, 1280, 1459, 1466, 1544, 1826, 2188, 2277, 2282, 2521, 2528, 2630, 2996, 3454, 3567, 3572, 3871, 3878, 4004, 4454, 5008, 5145, 5150, 5509, 5516, 5666, 6200, 6850, 7011, 7016, 7435, 7442
Offset: 1
A308886
Positions of 1's on the spiral defined in A308884.
Original entry on oeis.org
4, 5, 6, 9, 10, 11, 12, 15, 21, 24, 31, 34, 44, 58, 61, 64, 66, 67, 68, 69, 71, 72, 75, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93, 96, 99, 100, 109, 111, 120, 122, 131, 133, 136, 139, 142, 161, 164, 187, 190, 196, 198, 200, 201, 202, 203, 204, 205, 207, 209, 210, 211, 213, 215
Offset: 1
A308887
Positions of 2's on the spiral defined in A308884.
Original entry on oeis.org
7, 8, 13, 14, 16, 19, 23, 29, 43, 50, 51, 53, 57, 62, 73, 74, 77, 83, 91, 92, 97, 98, 102, 103, 104, 105, 106, 107, 113, 116, 117, 119, 127, 129, 135, 140, 157, 163, 170, 171, 173, 177, 179, 183, 194, 212, 221, 227, 242, 245, 247, 248, 250, 253, 257, 258, 259, 260, 262, 263, 264
Offset: 1
A308888
Positions of 3's on the spiral defined in A308884.
Original entry on oeis.org
17, 18, 22, 26, 27, 28, 32, 33, 38, 39, 45, 46, 52, 59, 60, 76, 101, 108, 118, 124, 128, 130, 146, 153, 158, 159, 160, 166, 172, 174, 176, 184, 185, 186, 188, 189, 191, 192, 193, 199, 206, 218, 236, 286, 292, 296, 298, 302, 326, 332, 333, 339, 344, 345, 350, 358, 364, 370, 372, 382, 383, 389, 390, 396, 397
Offset: 1
A308895
Positions of 4's on the spiral defined in A308890.
Original entry on oeis.org
149, 152, 218, 354, 659, 663, 664, 668, 686, 693, 716, 747, 1211, 1276, 1281, 1460, 1467, 1545, 1827, 2189, 2278, 2283, 2522, 2529, 2631, 2997, 3455, 3568, 3573, 3872, 3879, 4005, 4455, 5009, 5146, 5151, 5510, 5517, 5667, 6201, 6851, 7012, 7017, 7436, 7443
Offset: 1
A308890
Follow along the squares in the square spiral (as in A274640); in each square write the smallest positive number that a knight placed at that square cannot see.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 3, 4, 4, 3, 1, 2, 4, 3, 2, 1, 4, 4, 4, 3, 1, 2, 4, 4, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3, 2, 4, 4, 1, 1, 1, 3, 3, 4, 3, 1, 1, 1, 3, 2, 4, 4, 2, 3, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 4, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 1
Offset: 1
A308896
Walk a rook along the square spiral numbered 0, 1, 2, ... (cf. A274641); a(n) = mex of earlier values the rook can move to.
Original entry on oeis.org
0, 1, 0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4, 5, 6, 7, 0, 4, 5, 6, 7, 1, 4, 5, 6, 7, 0, 4, 5, 6, 7, 1, 2, 5, 4, 7, 6, 3, 0, 2, 5, 4, 7, 6, 3, 1, 2, 5, 4, 7, 6, 3, 0, 2, 5, 4, 7, 6, 3, 1, 8, 9, 10, 11, 12, 13, 14, 15, 0, 8, 9, 10, 11, 12, 13, 14, 15, 1, 8
Offset: 0
The central 21 X 21 portion of the plane:
[ 4 1 3 30 31 28 29 26 27 24 25 22 23 20 21 18 19 16 17 2 0]
[ 5 2 1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0 3]
[18 17 16 1 3 6 7 12 13 14 15 8 9 10 11 4 5 2 0 31 30]
[19 16 17 2 1 7 6 13 12 15 14 9 8 11 10 5 4 0 3 30 31]
[16 19 18 5 4 1 3 14 15 12 13 10 11 8 9 2 0 7 6 29 28]
[17 18 19 4 5 2 1 15 14 13 12 11 10 9 8 0 3 6 7 28 29]
[22 21 20 11 10 9 8 1 3 6 7 4 5 2 0 15 14 13 12 27 26]
[23 20 21 10 11 8 9 2 1 7 6 5 4 0 3 14 15 12 13 26 27]
[20 23 22 9 8 11 10 5 4 1 3 2 0 7 6 13 12 15 14 25 24]
[21 22 23 8 9 10 11 4 5 2 1 0 3 6 7 12 13 14 15 24 25]
*26 25 24 15 14 13 12 7 6 3 *0* 1 2 5 4 11 10 9 8 23 22]
[27 24 25 14 15 12 13 6 7 0 2 3 1 4 5 10 11 8 9 22 23]
[24 27 26 13 12 15 14 3 0 4 5 6 7 1 2 9 8 11 10 21 20]
[25 26 27 12 13 14 15 0 2 5 4 7 6 3 1 8 9 10 11 20 21]
[30 29 28 7 6 3 0 8 9 10 11 12 13 14 15 1 2 5 4 19 18]
[31 28 29 6 7 0 2 9 8 11 10 13 12 15 14 3 1 4 5 18 19]
[28 31 30 3 0 4 5 10 11 8 9 14 15 12 13 6 7 1 2 17 16]
[29 30 31 0 2 5 4 11 10 9 8 15 14 13 12 7 6 3 1 16 17]
[ 6 3 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2]
[ 7 0 2 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 3 1]
[ 0 4 5 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 6 7]
===============================**===============================
- Rémy Sigrist, Table of n, a(n) for n = 0..16128
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Rémy Sigrist, Colored representation of the spiral for -511 <= x, y <= 511 (where dark pixels correspond to higher values and red pixels correspond to 0's)
- Rémy Sigrist, Scatterplot of (x,y) such that A(x,y) has bit b set to one for b = 0..6 and -63 <= x <= 64 and -63 <= y <= 64
- Rémy Sigrist, PARI program for A308896
- N. J. A. Sloane, Initial terms of spiral
- N. J. A. Sloane, Explicit formulas for the array in A308896, Jul 02 2019
- N. J. A. Sloane, The two kinds of sectors. (Rows y=1 and above form a sector of the first type, rows y=0 and below form the second type.)
A361154
Consider the square grid with cells {(x,y), x, y >= 0}; label the cells by downwards antidiagonals with nonnegative integers so that cells which are a knight's move apart have different labels; always choose smallest possible label.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 3, 1, 3, 0, 1, 1, 1, 2, 4, 4, 2, 1, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 1, 0, 3, 3, 1, 0, 1, 3, 3, 0, 1, 1, 1, 2, 3, 1, 2, 2, 1, 3, 2, 1, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 1, 0
Offset: 0
The initial antidiagonals are:
0,
0, 0,
1, 0, 1,
1, 2, 2, 1,
0, 1, 2, 1, 0,
0, 0, 2, 2, 0, 0,
1, 0, 3, 1, 3, 0, 1,
1, 1, 2, 4, 4, 2, 1, 1,
0, 1, 2, 3, 0, 3, 2, 1, 0,
0, 0, 2, 2, 0, 0, 2, 2, 0, 0,
1, 0, 3, 3, 1, 0, 1, 3, 3, 0, 1,
1, 1, 2, 3, 1, 2, 2, 1, 3, 2, 1, 1,
0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 1, 0,
...
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Initial corner of grid showing first 15 antidiagonals. [Different labels have different colors: 0 = red, 1 = orange, etc.]
- Rémy Sigrist, Initial corner of grid showing cells (x, y) with x, y <= 80 [0 = red, 1 = orange, 2 = yellow, 3 = green, 4 = cyan]
- Rémy Sigrist, PARI program
A361299
Counterclockwise spiral constructed of distinct terms such that any two terms a knight's move apart are coprime; always choose the smallest possible positive term.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 8, 11, 10, 13, 6, 15, 12, 17, 14, 19, 16, 23, 18, 25, 20, 29, 22, 21, 24, 31, 26, 37, 28, 35, 32, 41, 34, 43, 27, 33, 36, 47, 44, 39, 38, 49, 40, 53, 46, 59, 30, 51, 50, 61, 55, 67, 58, 71, 52, 45, 56, 73, 62, 65, 64, 79, 42, 77, 48, 83
Offset: 1
The spiral begins:
33--27--43--34--41--32--35
| |
36 19--14--17--12--15 28
| | | |
47 16 5---4---3 6 37
| | | | | |
44 23 7 1---2 13 26
| | | | |
39 18 9---8--11--10 31
| | |
38 25--20--29--22--21--24
|
49--40--53--46---.---.---.
Showing 1-10 of 14 results.
Comments