cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A308885 Positions of 0's on the spiral defined in A308884.

Original entry on oeis.org

0, 1, 2, 3, 20, 25, 30, 35, 36, 37, 40, 41, 42, 47, 48, 49, 54, 55, 56, 63, 65, 70, 79, 88, 94, 95, 110, 112, 114, 115, 121, 123, 125, 126, 132, 134, 137, 138, 141, 143, 144, 145, 147, 149, 150, 152, 154, 155, 156, 162, 165, 167, 168, 169, 175, 178, 180, 181, 182, 195, 197
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Crossrefs

A308889 Positions of 4's on the spiral defined in A308884.

Original entry on oeis.org

148, 151, 217, 353, 658, 662, 663, 667, 685, 692, 715, 746, 1210, 1275, 1280, 1459, 1466, 1544, 1826, 2188, 2277, 2282, 2521, 2528, 2630, 2996, 3454, 3567, 3572, 3871, 3878, 4004, 4454, 5008, 5145, 5150, 5509, 5516, 5666, 6200, 6850, 7011, 7016, 7435, 7442
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Crossrefs

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, Jul 02 2019

A308886 Positions of 1's on the spiral defined in A308884.

Original entry on oeis.org

4, 5, 6, 9, 10, 11, 12, 15, 21, 24, 31, 34, 44, 58, 61, 64, 66, 67, 68, 69, 71, 72, 75, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93, 96, 99, 100, 109, 111, 120, 122, 131, 133, 136, 139, 142, 161, 164, 187, 190, 196, 198, 200, 201, 202, 203, 204, 205, 207, 209, 210, 211, 213, 215
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Crossrefs

A308887 Positions of 2's on the spiral defined in A308884.

Original entry on oeis.org

7, 8, 13, 14, 16, 19, 23, 29, 43, 50, 51, 53, 57, 62, 73, 74, 77, 83, 91, 92, 97, 98, 102, 103, 104, 105, 106, 107, 113, 116, 117, 119, 127, 129, 135, 140, 157, 163, 170, 171, 173, 177, 179, 183, 194, 212, 221, 227, 242, 245, 247, 248, 250, 253, 257, 258, 259, 260, 262, 263, 264
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Crossrefs

A308888 Positions of 3's on the spiral defined in A308884.

Original entry on oeis.org

17, 18, 22, 26, 27, 28, 32, 33, 38, 39, 45, 46, 52, 59, 60, 76, 101, 108, 118, 124, 128, 130, 146, 153, 158, 159, 160, 166, 172, 174, 176, 184, 185, 186, 188, 189, 191, 192, 193, 199, 206, 218, 236, 286, 292, 296, 298, 302, 326, 332, 333, 339, 344, 345, 350, 358, 364, 370, 372, 382, 383, 389, 390, 396, 397
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Crossrefs

A308895 Positions of 4's on the spiral defined in A308890.

Original entry on oeis.org

149, 152, 218, 354, 659, 663, 664, 668, 686, 693, 716, 747, 1211, 1276, 1281, 1460, 1467, 1545, 1827, 2189, 2278, 2283, 2522, 2529, 2631, 2997, 3455, 3568, 3573, 3872, 3879, 4005, 4455, 5009, 5146, 5151, 5510, 5517, 5667, 6201, 6851, 7012, 7017, 7436, 7443
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Comments

Add 1 to the terms of A308889.

Crossrefs

Extensions

More terms from Rémy Sigrist, Jul 02 2019

A308890 Follow along the squares in the square spiral (as in A274640); in each square write the smallest positive number that a knight placed at that square cannot see.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 3, 4, 4, 3, 1, 2, 4, 3, 2, 1, 4, 4, 4, 3, 1, 2, 4, 4, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3, 2, 4, 4, 1, 1, 1, 3, 3, 4, 3, 1, 1, 1, 3, 2, 4, 4, 2, 3, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 4, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2019

Keywords

Comments

Similar to A274640, except that here we consider the mex of squares that are a knight's moves rather than queen's moves.
Since there are at most 4 earlier cells in the spiral at a knight's move from any square, a(n) <= 5.
This is obtained by adding 1 to the terms of A308884. "Mex" here means minimal positive excluded value.

Crossrefs

A308896 Walk a rook along the square spiral numbered 0, 1, 2, ... (cf. A274641); a(n) = mex of earlier values the rook can move to.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4, 5, 6, 7, 0, 4, 5, 6, 7, 1, 4, 5, 6, 7, 0, 4, 5, 6, 7, 1, 2, 5, 4, 7, 6, 3, 0, 2, 5, 4, 7, 6, 3, 1, 2, 5, 4, 7, 6, 3, 0, 2, 5, 4, 7, 6, 3, 1, 8, 9, 10, 11, 12, 13, 14, 15, 0, 8, 9, 10, 11, 12, 13, 14, 15, 1, 8
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2019

Keywords

Comments

Analog of A308884 but using a rook rather than a knight.
The array of values - see the illustration in the link - appears to have a number of interesting symmetries.

Examples

			The central 21 X 21 portion of the plane:
[ 4  1  3 30 31 28 29 26 27 24 25 22 23 20 21 18 19 16 17  2  0]
[ 5  2  1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  0  3]
[18 17 16  1  3  6  7 12 13 14 15  8  9 10 11  4  5  2  0 31 30]
[19 16 17  2  1  7  6 13 12 15 14  9  8 11 10  5  4  0  3 30 31]
[16 19 18  5  4  1  3 14 15 12 13 10 11  8  9  2  0  7  6 29 28]
[17 18 19  4  5  2  1 15 14 13 12 11 10  9  8  0  3  6  7 28 29]
[22 21 20 11 10  9  8  1  3  6  7  4  5  2  0 15 14 13 12 27 26]
[23 20 21 10 11  8  9  2  1  7  6  5  4  0  3 14 15 12 13 26 27]
[20 23 22  9  8 11 10  5  4  1  3  2  0  7  6 13 12 15 14 25 24]
[21 22 23  8  9 10 11  4  5  2  1  0  3  6  7 12 13 14 15 24 25]
*26 25 24 15 14 13 12  7  6  3 *0* 1  2  5  4 11 10  9  8 23 22]
[27 24 25 14 15 12 13  6  7  0  2  3  1  4  5 10 11  8  9 22 23]
[24 27 26 13 12 15 14  3  0  4  5  6  7  1  2  9  8 11 10 21 20]
[25 26 27 12 13 14 15  0  2  5  4  7  6  3  1  8  9 10 11 20 21]
[30 29 28  7  6  3  0  8  9 10 11 12 13 14 15  1  2  5  4 19 18]
[31 28 29  6  7  0  2  9  8 11 10 13 12 15 14  3  1  4  5 18 19]
[28 31 30  3  0  4  5 10 11  8  9 14 15 12 13  6  7  1  2 17 16]
[29 30 31  0  2  5  4 11 10  9  8 15 14 13 12  7  6  3  1 16 17]
[ 6  3  0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  1  2]
[ 7  0  2 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30  3  1]
[ 0  4  5 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29  6  7]
===============================**===============================
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = 0, 1 iff n belongs to A002378, A085046, respectively. - Rémy Sigrist, Jul 02 2019
For formulas for the terms in the array, see the "Explicit formulas" link.

Extensions

More terms from Rémy Sigrist, Jul 02 2019

A361154 Consider the square grid with cells {(x,y), x, y >= 0}; label the cells by downwards antidiagonals with nonnegative integers so that cells which are a knight's move apart have different labels; always choose smallest possible label.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 3, 1, 3, 0, 1, 1, 1, 2, 4, 4, 2, 1, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 1, 0, 3, 3, 1, 0, 1, 3, 3, 0, 1, 1, 1, 2, 3, 1, 2, 2, 1, 3, 2, 1, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2023, based on an email from Jodi Spitz, Mar 07 2023

Keywords

Comments

This can also be described as the lexicographically earliest sequence read by downwards antidiagonals in which knight-adjacent cells have distinct labels. [The direction of the diagonals has to be specified, because it can make a difference - as for example if "knight" is replaced by "bishop", when one gets the non-symmetric array A060510.]
Theorem (Spitz): a(n) <= 4. Proof. True at the start, and then by induction, since when labeling a cell there are at most four existing cells that affect it.

Examples

			The initial antidiagonals are:
  0,
  0, 0,
  1, 0, 1,
  1, 2, 2, 1,
  0, 1, 2, 1, 0,
  0, 0, 2, 2, 0, 0,
  1, 0, 3, 1, 3, 0, 1,
  1, 1, 2, 4, 4, 2, 1, 1,
  0, 1, 2, 3, 0, 3, 2, 1, 0,
  0, 0, 2, 2, 0, 0, 2, 2, 0, 0,
  1, 0, 3, 3, 1, 0, 1, 3, 3, 0, 1,
  1, 1, 2, 3, 1, 2, 2, 1, 3, 2, 1, 1,
  0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 1, 0,
...
		

References

Crossrefs

Programs

  • PARI
    See Links section.

Formula

The colors appear to follow an obvious pattern. For example, the red (0) squares appear to be exactly the squares at (4*i + d, 4*j + e), for i and j >= 0, d and e = 0 or 1. The blue (4) squares appear to be exactly the squares at (4*k, 4*k - 1) and (4*k - 1, 4*k), for k >= 1. - N. J. A. Sloane, Mar 07 2023

Extensions

Data corrected by Rémy Sigrist, Mar 07 2023

A361299 Counterclockwise spiral constructed of distinct terms such that any two terms a knight's move apart are coprime; always choose the smallest possible positive term.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 8, 11, 10, 13, 6, 15, 12, 17, 14, 19, 16, 23, 18, 25, 20, 29, 22, 21, 24, 31, 26, 37, 28, 35, 32, 41, 34, 43, 27, 33, 36, 47, 44, 39, 38, 49, 40, 53, 46, 59, 30, 51, 50, 61, 55, 67, 58, 71, 52, 45, 56, 73, 62, 65, 64, 79, 42, 77, 48, 83
Offset: 1

Views

Author

Jodi Spitz, Mar 08 2023

Keywords

Examples

			The spiral begins:
  33--27--43--34--41--32--35
   |                       |
  36  19--14--17--12--15  28
   |   |               |   |
  47  16   5---4---3   6  37
   |   |   |       |   |   |
  44  23   7   1---2  13  26
   |   |   |           |   |
  39  18   9---8--11--10  31
   |   |                   |
  38  25--20--29--22--21--24
   |
  49--40--53--46---.---.---.
		

Crossrefs

Cf. A308884.

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, Mar 09 2023
Showing 1-10 of 14 results. Next