This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308918 #17 Jul 05 2019 03:01:05 %S A308918 0,0,1,2,7,8,13,18,27,35,50,61,75,79,96,113,120,150,173,180,204,227, %T A308918 245,274,295,318,346,363,398,438,448,484,524,537,584,625,648,707,749, %U A308918 771,830,882,914,983,1041,1073,1143,1207,1238,1307,1372,1405,1480,1544,1573,1645 %N A308918 a(n) is the number of palindromic numbers with 7 digits in base n which are also palindromic in base n+1. %C A308918 If an integer m is palindromic in both bases n and n+1, then m has an odd number of digits in base n (see also A048268). %C A308918 If m has 1, 3 or 5 digits in base n, the number of integers that are palindromic in bases n and n+1 is of order O(n) (see also A048268). %C A308918 If m has at least 7 digits in base n, it seems that a(n) is of order O(n^2*log(n)). %o A308918 (Python) %o A308918 def nextpal(n,base): # m is the first palindrome successor of n in base base %o A308918 m, pl = n+1, 0 %o A308918 while m > 0: %o A308918 m, pl = m//base, pl+1 %o A308918 if n+1 == base**pl: %o A308918 pl = pl+1 %o A308918 n = n//(base**(pl//2))+1 %o A308918 m, n = n, n//(base**(pl%2)) %o A308918 while n > 0: %o A308918 m, n = m*base+n%base, n//base %o A308918 return m %o A308918 def ispal(n,b): %o A308918 if n%b == 0: %o A308918 return 0 %o A308918 else: %o A308918 nn, m = n, 0 %o A308918 while n > 0: %o A308918 n, m = n//b, m*b+n%b %o A308918 return m == nn %o A308918 n, d = 1, 7 %o A308918 while n < 20000: %o A308918 n = n+1 %o A308918 p = n**(d-1)-1 %o A308918 a = 0 %o A308918 while p < n**d: %o A308918 p = nextpal(p,n+1) %o A308918 if ispal(p,n): %o A308918 a = a+1 %o A308918 print(n,a) %o A308918 (PARI) nextpal(n, b) = {my(m=n+1, p = 0); while (m > 0, m = m\b; p++;); if (n+1 == b^p, p++); n = n\(b^(p\2))+1; m = n; n = n\(b^(p%2)); while (n > 0, m = m*b + n%b; n = n\b;); m;} \\ after Python %o A308918 ispal(n, b) = my(d=digits(n, b)); Vecrev(d) == d; %o A308918 a(n) = {my(d=7, p = n^(d-1)-1, nb = 0); while (p < n^d, p = nextpal(p, n+1); if (ispal(p, n), nb++);); nb;} \\ _Michel Marcus_, Jul 04 2019 %Y A308918 Cf. A048268. %K A308918 nonn,base %O A308918 2,4 %A A308918 _A.H.M. Smeets_, Jun 30 2019