This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308925 #11 Oct 15 2021 14:43:40 %S A308925 0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,8,8,15,20,17,24,35,42,50,66,61,92,102, %T A308925 122,129,180,150,237,233,296,260,370,300,463,398,521,467,708,527,845, %U A308925 667,935,768,1158,839,1372,1039,1547,1233,1898,1294,2217,1612 %N A308925 Sum of the largest parts in the partitions of n into 6 primes. %H A308925 Robert Israel, <a href="/A308925/b308925.txt">Table of n, a(n) for n = 0..2000</a> %H A308925 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308925 a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * (n-i-j-k-l-m), where c = A010051. %F A308925 a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308923(n) - A308924(n). %p A308925 N:= proc(m,k,n) option remember; %p A308925 local q,t; %p A308925 if m = 1 then if k=n and isprime(k) then return 1 %p A308925 else return 0 %p A308925 fi fi; %p A308925 if m*k < n then return 0 fi; %p A308925 t:= 0; %p A308925 q:= ceil((n-k)/(m-1))-1; %p A308925 do %p A308925 q:= nextprime(q); %p A308925 if q > min(k, n-k) then return t fi; %p A308925 t:= t + procname(m-1,q,n-k) %p A308925 od; %p A308925 end proc: %p A308925 F:= proc(n) local p, q, t; %p A308925 p:= ceil(n/6)-1; %p A308925 t:= 0; %p A308925 do %p A308925 p:= nextprime(p); %p A308925 if p >= n then return t fi; %p A308925 q:= ceil((n-p)/5)-1; %p A308925 do %p A308925 q:= nextprime(q); %p A308925 if q > min(p,n-p) then break fi; %p A308925 t:= t + p*N(5,q,n-p); %p A308925 od %p A308925 od %p A308925 end proc: %p A308925 map(F, [$0..100]); # _Robert Israel_, Jul 02 2019 %t A308925 Table[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m)*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}] %Y A308925 Cf. A010051, A259196, A308919, A308920, A308921, A308922, A308923, A308924. %K A308925 nonn %O A308925 0,13 %A A308925 _Wesley Ivan Hurt_, Jun 30 2019