This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308929 #9 Mar 17 2025 04:01:34 %S A308929 0,0,0,0,0,0,0,1,1,2,3,5,8,13,19,27,38,54,73,101,133,177,230,298,380, %T A308929 485,608,762,944,1165,1423,1738,2101,2534,3035,3625,4300,5095,5996, %U A308929 7043,8231,9598,11142,12910,14893,17148,19674,22529,25709,29295,33267 %N A308929 Sum of the fifth largest parts in the partitions of n into 7 parts. %H A308929 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308929 a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} l. %F A308929 a(n) = A308926(n) - A308927(n) - A308928(n) - A308930(n) - A308931(n) - A308932(n) - A308933(n). %t A308929 Table[Sum[Sum[Sum[Sum[Sum[Sum[l, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}] %Y A308929 Cf. A026813, A308926, A308927, A308928, A308930, A308931, A308932, A308933. %K A308929 nonn %O A308929 0,10 %A A308929 _Wesley Ivan Hurt_, Jun 30 2019