This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308943 #28 Jul 22 2024 10:36:25 %S A308943 1,2,3,24,5,1800,7,15680,756,113400,11,79693891200,13,4372368, %T A308943 20495475,44972928000,17,2028339316523520,19,52737518268864000, %U A308943 3247700400,3585005424,23,38135556819759802035135799296,1328250,87885070000,370142004375,10293527616645873600000,29 %N A308943 a(n) = Product_{d|n} binomial(n,d). %H A308943 Seiichi Manyama, <a href="/A308943/b308943.txt">Table of n, a(n) for n = 1..419</a> %F A308943 a(n) = Product_{k=1..n} binomial(n,gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} binomial(n,n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - _Richard L. Ollerton_, Nov 08 2021 %t A308943 Table[Product[Binomial[n, d], {d, Divisors[n]}], {n, 1, 29}] %o A308943 (PARI) a(n) = my(p=1); fordiv(n, d, p *= binomial(n, d)); p; \\ _Michel Marcus_, Jul 02 2019 %o A308943 (Python) %o A308943 from math import prod, comb %o A308943 from sympy import divisors %o A308943 def A308943(n): return prod(comb(n,d) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Jul 22 2024 %Y A308943 Cf. A001142, A008578 (fixed points), A056045 (similar, with Sum), A098710, A135396. %Y A308943 Cf. A000010 (comments on product formulas). %K A308943 nonn %O A308943 1,2 %A A308943 _Ilya Gutkovskiy_, Jul 01 2019