cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308949 a(n) is the greatest divisor of A000129(n) that is coprime to A000129(m) for all positive integers m < n.

This page as a plain text file.
%I A308949 #15 Aug 10 2019 09:25:23
%S A308949 1,2,5,3,29,7,169,17,197,41,5741,11,33461,239,269,577,1136689,199,
%T A308949 6625109,1121,45697,8119,225058681,1153,45232349,47321,7761797,38081,
%U A308949 44560482149,961,259717522849,665857,52734529,1607521,1800193921,13067,51422757785981
%N A308949 a(n) is the greatest divisor of A000129(n) that is coprime to A000129(m) for all positive integers m < n.
%C A308949 a(n) is squarefree unless n is of the form A214028(A238736(k)) = {7, 30, 1546462, ...}. The terms in A238736 are called 2-Wall-Sun-Sun primes.
%F A308949 a(n) = A008555(n) / gcd(A008555(n), n) if n != 2.
%e A308949 A000129(30) = 107578520350 = 2 * 5^2 * 7 * 29 * 31^2 * 41 * 269. We have 2, 7 divides A000129(6) = 70; 29, 41 divides A000129(10) = 2378; 5, 269 divides A000129(15) = 195025, but A000129(m) is coprime to 31 for all 1 <= m < 30, so a(30) = 31^2 = 961.
%t A308949 nmax = 40;
%t A308949 pell = {1, 2};
%t A308949 pp = {1, 2};
%t A308949 Do[s = 2*pell[[-1]] + pell[[-2]];
%t A308949   AppendTo[pell, s];
%t A308949   AppendTo[pp, s/Times @@ pp[[Most[Divisors[n]]]]], {n, 3, nmax}];
%t A308949 a[2] = 2;
%t A308949 a[n_] := pp[[n]]/GCD[pp[[n]], n];
%t A308949 Array[a, nmax] (* _Jean-François Alcover_, Jul 06 2019, after _T. D. Noe_ in A008555 *)
%o A308949 (PARI) T(n) = ([2, 1; 1, 0]^n)[2, 1]
%o A308949 b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
%o A308949 a(n) = if(n==2, 2, b(n)/gcd(n, b(n)))
%Y A308949 Cf. A000129, A008555, A178763, A214028, A238736.
%K A308949 nonn
%O A308949 1,2
%A A308949 _Jianing Song_, Jul 02 2019