This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308971 #18 Feb 24 2020 08:07:51 %S A308971 1,3,11,5,137,7,11,761,7129,61,863,509,919,1117,41233,8431,1138979, %T A308971 39541,7440427,11167027,18858053,227,583859,467183,312408463, %U A308971 34395742267,215087,375035183,4990290163,17783,2667653736673,535919,199539368321,15088528003,137121586897 %N A308971 Largest prime factor of A001008(n), numerator of n-th harmonic number; a(1) = 1. %C A308971 Initial terms coincide with A120299 = greatest prime factor of Stirling numbers of first kind A000254. They differ when the unreduced denominator of H(n), equal to n!, is divisible by this factor, i.e., A120299(n) <= n. Can this ever happen? %H A308971 Amiram Eldar, <a href="/A308971/b308971.txt">Table of n, a(n) for n = 1..325</a> %F A308971 a(n) = A006530(A001008(n)). - _Amiram Eldar_, Feb 24 2020 %e A308971 n | A001008(n) written as product of primes %e A308971 -----+------------------------------------------ %e A308971 1 | 1 (empty product) %e A308971 2 | 3 %e A308971 3 | 11 %e A308971 4 | 5 * 5 %e A308971 5 | 137 %e A308971 6 | 7 * 7 %e A308971 7 | 3 * 11 * 11 %e A308971 8 | 761 %e A308971 9 | 7129 %e A308971 10 | 11 * 11 * 61 %e A308971 11 | 97 * 863 %e A308971 12 | 13 * 13 * 509 %e A308971 13 | 29 * 43 * 919 %e A308971 14 | 1049 * 1117 %e A308971 15 | 29 * 41233 %e A308971 16 | 17 * 17 * 8431 %e A308971 17 | 37 * 1138979 %e A308971 18 | 19 * 19 * 39541 %e A308971 19 | 37 * 7440427 %e A308971 20 | 5 * 11167027 %e A308971 etc., therefore this sequence = 1, 3, 11, 5, 137, 7, 11, 761, 7129, 61, ... %t A308971 Array[FactorInteger[Numerator@HarmonicNumber[#]][[-1, 1]] &, 35] (* _Michael De Vlieger_, Jul 04 2019 *) %o A308971 (PARI) a(n)={if(n>1, factor(A001008(n))[1,1], 1)} %Y A308971 Cf. A001008, A006530. %Y A308971 Cf. A308967 (number of prime factors), A308968 (table of factorization), A308969 (table of prime divisors), A308970 (smallest prime factor) of A001008(n). %K A308971 nonn %O A308971 1,2 %A A308971 _M. F. Hasler_, Jul 03 2019