This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308976 #9 Oct 15 2021 14:48:37 %S A308976 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,4,4,6,9,9,9,13,14,18,18,20,24,32, %T A308976 29,37,41,47,48,65,57,76,69,88,85,115,90,129,120,157,132,187,150,225, %U A308976 176,247,202,298,221,339,266,385,293,453,328,522,366,565,426 %N A308976 Sum of the sixth largest parts of the partitions of n into 7 primes. %H A308976 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308976 a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} c(i) * c(j) * c(k) * c(l) * c(m) * c(o) * c(n-i-j-k-l-m-o) * m, where c = A010051. %F A308976 a(n) = A308974(n) - A308975(n) - A308977(n) - A308978(n) - A308979(n) - A307637(n) - A308980(n). %t A308976 Table[Sum[Sum[Sum[Sum[Sum[Sum[m*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[n - i - j - k - l - m - o] - PrimePi[n - i - j - k - l - m - o - 1]), {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}] %Y A308976 Cf. A010051, A259197, A307637, A308974, A308975, A308977, A308978, A308979, A308980. %K A308976 nonn %O A308976 0,15 %A A308976 _Wesley Ivan Hurt_, Jul 04 2019