This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308977 #9 Oct 15 2021 14:49:52 %S A308977 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,4,4,7,9,10,9,15,14,20,18,24,24,39, %T A308977 31,47,43,58,50,81,61,97,75,116,93,146,100,172,134,207,148,246,170, %U A308977 298,202,332,232,395,257,463,314,521,343,612,392,720,452,788 %N A308977 Sum of the fifth largest parts of the partitions of n into 7 primes. %H A308977 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A308977 a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} c(i) * c(j) * c(k) * c(l) * c(m) * c(o) * c(n-i-j-k-l-m-o) * l, where c = A010051. %F A308977 a(n) = A308974(n) - A308975(n) - A308976(n) - A308978(n) - A308979(n) - A307637(n) - A308980(n). %t A308977 Table[Sum[Sum[Sum[Sum[Sum[Sum[l*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[n - i - j - k - l - m - o] - PrimePi[n - i - j - k - l - m - o - 1]), {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}] %Y A308977 Cf. A010051, A259197, A307637, A308974, A308975, A308976, A308978, A308979, A308980. %K A308977 nonn %O A308977 0,15 %A A308977 _Wesley Ivan Hurt_, Jul 04 2019